14.計算下列各式,使得結(jié)果的分母中不含有二次根式:
(1)$\frac{1}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$;
(2)$\frac{1}{\sqrt{32}}$=$\frac{\sqrt{2}}{8}$;
(3)$\frac{\sqrt{2}}{2\sqrt{3}}$=$\frac{\sqrt{6}}{6}$;
(4)$\frac{x}{\sqrt{5y}}$=$\frac{x\sqrt{5y}}{5y}$.

分析 (1)把分式的分子分母同時乘以$\sqrt{5}$即可;
(2)把分母化為4$\sqrt{2}$的形式,再把分式的分子與分母同時乘以$\sqrt{2}$即可;
(3)把分式的分子分母同時乘以即可;
(4)把分式的分子分母同時乘以$\sqrt{5y}$即可.

解答 解:(1)原式=$\frac{\sqrt{5}}{\sqrt{5}•\sqrt{5}}$=$\frac{\sqrt{5}}{5}$.
故答案為:$\frac{\sqrt{5}}{5}$;

(2)原式=$\frac{1}{4\sqrt{2}}$=$\frac{\sqrt{2}}{4\sqrt{2}•\sqrt{2}}$=$\frac{\sqrt{2}}{8}$.
故答案為:$\frac{\sqrt{2}}{8}$;

(3)原式=$\frac{\sqrt{2}•\sqrt{3}}{2\sqrt{3}•\sqrt{3}}$=$\frac{\sqrt{6}}{6}$.
故答案為:$\frac{\sqrt{6}}{6}$;

(4)原式=$\frac{x\sqrt{5y}}{\sqrt{5y}•\sqrt{5y}}$=$\frac{x\sqrt{5y}}{5y}$.
故答案為:$\frac{x\sqrt{5y}}{5y}$.

點(diǎn)評 本題考查的是分母有理化,熟知分母有理化常常是乘二次根式本身(分母只有一項(xiàng))或與原分母組成平方差公式是解答此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,E是△ABC的內(nèi)心,若∠BEC=130°,則∠A的度數(shù)是( 。
A.60°B.80°C.50°D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.甲乙兩地相距900千米,一列快車從甲地出發(fā)勻速開往乙地,速度為120千米/時;快車開出30分鐘時,一列慢車從乙地出發(fā)勻速開往甲地,速度為90千米/時.設(shè)慢車行駛的時間為x小時,快車到達(dá)乙地后停止行駛,根據(jù)題意解答下列問題:
(1)當(dāng)快車與慢車相遇時,求慢車行駛的時間;
(2)請從下列(A),(B)兩題中任選一題作答.
我選擇:(A).
(A)當(dāng)兩車之間的距離為315千米時,求快車所行的路程;
(B)①在慢車從乙地開往甲地的過程中,求快慢兩車之間的距離;(用含x的代數(shù)式表示)
②若第二列快車也從甲地出發(fā)勻速駛往乙地,速度與第一列快車相同,在第一列快車與慢車相遇后30分鐘時,第二列快車與慢車相遇,直接寫出第二列快車比第一列快車晚出發(fā)多少小時.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,四邊形ABCD中,AB與CD不平行,M,N分別是AD,BC的中點(diǎn),AB=4,DC=2,則MN的長不可能是( 。
A.3B.2.5C.2D.1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.為了深化改革,某校積極開展校本課程建設(shè),計劃成立“文學(xué)鑒賞”、“科學(xué)實(shí)驗(yàn)”、“音樂舞蹈”和“手工編織”等多個社團(tuán),要求每位學(xué)生都自主選擇其中一個社團(tuán).為此,隨機(jī)調(diào)查了本校各年級部分學(xué)生選擇社團(tuán)的意向,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖表(不完整):
某校被調(diào)查學(xué)生選擇社團(tuán)意向統(tǒng)計表
選擇意向所占百分比
文學(xué)鑒賞a
科學(xué)實(shí)驗(yàn)35%
音樂舞蹈b
手工編織10%
其他c
根據(jù)統(tǒng)計圖表中的信息,解答下列問題:
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù)及a,b,c的值;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)若該校共有1200名學(xué)生,試估計全校選擇“科學(xué)實(shí)驗(yàn)”社團(tuán)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.某精品店購進(jìn)甲、乙兩種小禮品,已知1件甲禮品的進(jìn)價比1件乙禮品的進(jìn)價多1元,購進(jìn)2件甲禮品與1件乙禮品共需11元.
(1)求甲禮品的進(jìn)價;
(2)經(jīng)市場調(diào)查發(fā)現(xiàn),若甲禮品按6元/件銷售,則每天可賣40件;若按5元/件銷售,則每天可賣60件.假設(shè)每天銷售的件數(shù)y(件)與售價x(元/件)之間滿足一次函數(shù)關(guān)系,求y與x之間的函數(shù)解析式;
(3)在(2)的條件下,當(dāng)甲禮品的售價定為多少時,才能使每天銷售甲禮品的利潤為60元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,下列圖形是一組按照某種規(guī)律擺放而成的圖案,則圖⑧中圓點(diǎn)的個數(shù)是(  )
A.64B.65C.66D.67

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,∠1=∠2,AB=AD,AC=AE.請將下面說明∠C=∠E的過程和理由補(bǔ)充完整.
證明:∵∠1=∠2(已知 ),
∴∠1+∠BAE=∠2+∠BAE
∴∠1+∠DAC=∠2+∠DAC,
即∠BAC=∠DAE,
在△ABC和△ADE中
$\left\{\begin{array}{l}{AB=AD(已知)}\\{AC=AE(已知)}\end{array}\right.$
∴△ABC≌△ADE(SAS)
∴∠C=∠E(全等三角形對應(yīng)角相等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,當(dāng)過O點(diǎn)畫不重合的2條射線時,共組成1個角;當(dāng)過O點(diǎn)畫不重合的3條射線時,共組成3個角;當(dāng)過O
點(diǎn)畫不重合的4條射線時,共組成6個角;….根據(jù)以上規(guī)律,當(dāng)過O點(diǎn)畫不重合的10條射線時,共組成(  )個角.
A.28B.36C.45D.55

查看答案和解析>>

同步練習(xí)冊答案