【題目】如圖,直線MN與x軸、y軸分別交于A、C兩點(diǎn),分別過(guò)A、C兩點(diǎn)作x軸、y軸的垂線相交于B點(diǎn),且OA、OC(OA>OC)的長(zhǎng)分別是一元二次方程x2﹣14x+48=0的兩個(gè)實(shí)數(shù)根.
(1)求A、C兩點(diǎn)的坐標(biāo).
(2)求直線MN的表達(dá)式.
(3)在直線MN上存在點(diǎn)P,使以點(diǎn)P、B、C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,請(qǐng)直接寫(xiě)出P點(diǎn)的坐標(biāo).
【答案】(1) A(8,0),C(0,6);(2) y=﹣x+6;;(3) P點(diǎn)的坐標(biāo)為(4,3)或(﹣,)或(,)或(,﹣)
【解析】
(1)通過(guò)解方程x2-14x+48=0可以求得OC=6,OA=8.即可得出答案;
(2)設(shè)直線MN的解析式是y=kx+b(k≠0).把點(diǎn)A、C的坐標(biāo)分別代入解析式,列出關(guān)于系數(shù)k、b的方程組,通過(guò)解方程組即可求得它們的值;
(3)需要分類討論:①當(dāng)PC=PB時(shí);②當(dāng)PC=BC時(shí);③當(dāng)PB=BC時(shí);根據(jù)等腰三角形的性質(zhì)、兩點(diǎn)間的距離公式以及一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征進(jìn)行解答.
(1)∵x2﹣14x+48=0,
解得:x1=6,x2=8.
∵OA,OC(OA>OC)的長(zhǎng)分別是一元二次方程x2﹣14x+48=0的兩個(gè)實(shí)數(shù)根,
∴OC=6,OA=8.
∴A(8,0),C(0,6);
(2)設(shè)直線MN的解析式是y=kx+b(k≠0).
由(1)知,A(8,0),C(0,6),
∵點(diǎn)A、C都在直線MN上,
∴,
解得:,
∴直線MN的解析式為y=﹣x+6;
(3)∵A(8,0),C(0,6),過(guò)A、C兩點(diǎn)作x軸、y軸的垂線相交于B點(diǎn),
∴B(8,6).
∵點(diǎn)P在直線MNy=﹣x+6上,
∴設(shè)P(a,﹣a+6),
當(dāng)以點(diǎn)P,B,C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形時(shí),分三種情況討論:如圖所示:
①當(dāng)PC=PB時(shí),點(diǎn)P是線段BC的中垂線與直線MN的交點(diǎn),則P(4,3);
②當(dāng)PC=BC時(shí),a2+(﹣a+6﹣6)2=82,
解得:a=±,
則P(﹣,)或(,);
③當(dāng)PB=BC時(shí),(a﹣8)2+(a﹣6+6)2=64,
解得:a=,
則﹣a+6=﹣,
∴P(,﹣).
綜上所述,P點(diǎn)的坐標(biāo)為(4,3)或(﹣,)或(,)或(,﹣).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸相交于點(diǎn)C(0,﹣3)
(1)求該二次函數(shù)的解析式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點(diǎn)A的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F,過(guò)點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過(guò)點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH,則在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長(zhǎng);
(3)設(shè)P點(diǎn)是x軸下方的拋物線上的一個(gè)動(dòng)點(diǎn),連接PA、PC,求△PAC面積的取值范圍,若△PAC面積為整數(shù)時(shí),這樣的△PAC有幾個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點(diǎn),
點(diǎn)A的坐標(biāo)為(2,6),點(diǎn)B的坐標(biāo)為(n,1).
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)點(diǎn)E為y軸上一個(gè)動(dòng)點(diǎn),若S△AEB=10,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的布袋里裝有4個(gè)大小、質(zhì)地均相同的乒乓球,每個(gè)球上面分別標(biāo)有1,2,3,4.小林先從布袋中隨機(jī)抽取一個(gè)乒乓球(不放回去),再?gòu)氖O碌?/span>3個(gè)球中隨機(jī)抽取第二個(gè)乒乓球.
(1)請(qǐng)你用樹(shù)狀圖或列表法列出所有可能的結(jié)果;
(2)求兩次取得乒乓球的數(shù)字之積為奇數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD∥BC,AB⊥BC,AB=3.點(diǎn)E為射線 BC上一個(gè)動(dòng)點(diǎn),連接AE,將△ABE沿AE折疊,點(diǎn)B落在點(diǎn)B′處,過(guò)點(diǎn)B′作AD的垂線,分別交AD,BC于點(diǎn)M,N.當(dāng)點(diǎn)B′為線段MN的三等分點(diǎn)時(shí),BE的長(zhǎng)為__________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△PAB中,M.N是AB上兩點(diǎn),△PMN是等邊三角形,∠APM=∠B.
(1)求證:∠A=∠BPN;
(2)求證:MN2=AM·BN;
(3)若AP=,AM=1,求線段MN,PB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的布袋中有分別標(biāo)有漢字“我”、“的”、“祖”、“國(guó)”的四個(gè)小球,除漢字外沒(méi)有任何區(qū)別,每次摸球前先搖勻再摸球.
(1)若從中任意摸一個(gè)球,求摸出球上的漢字剛好是“國(guó)”字的概率;
(2)小林從中任取一個(gè)球,記下漢字后放回,搖勻后再?gòu)闹腥稳∫粋(gè).請(qǐng)用樹(shù)狀圖或列表法,求小林取出的兩個(gè)球上的漢字恰好能組成“祖國(guó)”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=a(x﹣3)2+過(guò)點(diǎn)C(0,4),頂點(diǎn)為M,與x軸交于A、B兩點(diǎn).如圖所示以AB為直徑作圓,記作⊙D,下列結(jié)論:①拋物線的對(duì)稱軸是直線x=3;②點(diǎn)C在⊙D外;③在拋物線上存在一點(diǎn)E,能使四邊形ADEC為平行四邊形;④直線CM與⊙D相切.正確的結(jié)論是( )
A.①③B.①④C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,,AC、BD交于點(diǎn)O,點(diǎn)P、Q分別是AB、BD上的動(dòng)點(diǎn),點(diǎn)P的運(yùn)動(dòng)路徑是,點(diǎn)Q的運(yùn)動(dòng)路徑是BD,兩點(diǎn)的運(yùn)動(dòng)速度相同并且同時(shí)結(jié)束.若點(diǎn)P的行程為x,的面積為y,則y關(guān)于x的函數(shù)圖象大致為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com