【題目】在△ABC中,∠ACB是銳角,點D在射線BC上運動,連接AD,將線段AD繞點A逆時針旋轉90°,得到AE,連接EC.
(1)操作發(fā)現(xiàn):
若AB=AC,∠BAC=90°,當D在線段BC上時(不與點B重合),如圖①所示,請你直接寫出線段CE和BD的位置關系和數(shù)量關系是 , ;
(2)猜想論證:
在(1)的條件下,當D在線段BC的延長線上時,如圖②所示,請你判斷(1)中結論是否成立,并證明你的判斷.
(3)拓展延伸:
如圖③,若AB≠AC,∠BAC≠90°,點D在線段BC上運動,試探究:當銳角∠ACB等于度時,線段CE和BD之間的位置關系仍成立(點C、E重合除外)?此時若作DF⊥AD交線段CE于點F,且當AC=3 時,請直接寫出線段CF的長的最大值是
【答案】
(1)CE=BD;CE⊥BD
(2)
解:(1)中的結論仍然成立.理由如下:
如圖2,
∵線段AD繞點A逆時針旋轉90°得到AE,
∴AE=AD,∠DAE=90°,
∵AB=AC,∠BAC=90°
∴∠CAE=∠BAD,
∴△ACE≌△ABD,
∴CE=BD,∠ACE=∠B,
∴∠BCE=90°,
所以線段CE,BD之間的位置關系和數(shù)量關系為:CE=BD,CE⊥BD;
(3)45;
【解析】解:(1)①∵AB=AC,∠BAC=90°,
∴線段AD繞點A逆時針旋轉90°得到AE,
∴AD=AE,∠BAD=∠CAE,
∴△BAD≌△CAE,
∴CE=BD,∠ACE=∠B,
∴∠BCE=∠BCA+∠ACE=90°,
∴線段CE,BD之間的位置關系和數(shù)量關系為:CE=BD,CE⊥BD;
故答案為:CE=BD,CE⊥BD;(3)45°; ;
過A作AM⊥BC于M,過E點作EN垂直于MA延長線于N,如圖3,
∵線段AD繞點A逆時針旋轉90°得到AE,
∴∠DAE=90°,AD=AE,
∴∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,
∴NE=AM,
∵CE⊥BD,即CE⊥MC,∴∠NEC=90°,
∴四邊形MCEN為矩形,
∴NE=MC,∴AM=MC,
∴∠ACB=45°,
∵四邊形MCEN為矩形,
∴Rt△AMD∽Rt△DCF,
∴ = ,設DC=x,
∵在Rt△AMC中,∠ACB=45°,AC=3 ,
∴AM=CM=3,MD=3﹣x,∴ = ,
∴CF=﹣ x2+x=﹣ (x﹣ )2+ ,
∴當x= 時有最大值,最大值為 .
故答案為:45°, .
(1)線段AD繞點A逆時針旋轉90°得到AE,根據(jù)旋轉的性質得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)證明的方法與(1)一樣.(3)過A作AM⊥BC于M,EN⊥AM于N,根據(jù)旋轉的性質得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,則NE=MA,由于∠ACB=45°,則AM=MC,所以MC=NE,易得四邊形MCEN為矩形,得到∠DCF=90°,
由此得到Rt△AMD∽Rt△DCF,得 ,設DC=x,而∠ACB=45°,AC= ,得AM=CM=3,MD=3﹣x,利用相似比可得到CF=﹣ x2+1,再利用二次函數(shù)即可求得CF的最大值.
科目:初中數(shù)學 來源: 題型:
【題目】為了響應“足球進校園”的目標,某校計劃為學校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.
(1)求A,B兩種品牌的足球的單價.
(2)求該校購買20個A品牌的足球和2個B品牌的足球的總費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A、C的坐標分別為A(-4,5),C(-1,3).
(1)請在網(wǎng)格平面內作出平面直角坐標系(不寫作法);
(2)請作出△ABC關于y軸對稱△A'B'C';
(3)分別寫出A'、B'、C'的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,所有正方形的中心均在坐標原點,且各邊與x軸或y軸平行,從內到外,它們的邊長依次為2,4,6,8 …,頂點依次為A1,A2,A3,A4,A5,…,則頂點A55的坐標是( )
A. (13,13) B. (-13,-13) C. (-14,-14) D. (14,14)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】銷售有限公司到某汽車制造有限公司選購A、B兩種型號的轎車,用300萬元可購進A型轎車10輛,B型轎車15輛;用300萬元可購進A型轎車8輛,B型轎車18輛.
(1)求A、B兩種型號的轎車每輛分別多少元?
(2)若該汽車銷售公司銷售一輛A型轎車可獲利8000元,銷售一輛B型轎車可獲利5000元,該汽車銷售公司準備用不超過400萬元購進A、B兩種型號轎車共30輛,且這兩種轎車全部售出后總獲利不低于20.4萬元,問:有幾種購車方案?在這幾種購車方案中,哪種獲利最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)下面對話,可知懶羊羊所買的筆和筆記本的;
價格分別為( )
喜羊羊:懶羊羊,你上周買的筆和筆記本的價格是多少?
懶羊羊:哦,我忘了,只記得先后買了兩次,第一次買了5支筆和10本筆記本共花了42元錢,第二次買了10支筆和5本筆記本共花了30元錢。
A. 0.8元/支,2.6元/本 B. 0.8元/支,3.6元/本
C. 1.2元/支,3.6元/本 D. 1.6元/支,3.2元/本
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解不等式組
請結合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得 ;
(Ⅱ)解不等式②,得 ;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,MN是⊙O的直徑,MN=4,∠AMN=40°,點B為弧AN的中點,點P是直徑MN上的一個動點,則PA+PB的最小值為( )
A.2
B.2
C.2
D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線l:y=x﹣1與x軸交于點A1 , 如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形AnBnCnCn﹣1 , 使得點A1、A2、A3、…在直線l上,點C1、C2、C3、…在y軸正半軸上,則點Bn的坐標是( )
A.(2n﹣1 , 2n﹣1)
B.(2n , 2n﹣1)
C.(2n﹣1 , 2n+1)
D.(2n﹣1 , 2n)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com