【題目】綜合與探究
問題背景
在綜合實(shí)踐課上,老師讓同學(xué)們根據(jù)如下問題情境,寫出兩個(gè)教學(xué)結(jié)論:
如圖,點(diǎn)C在線段BD上,點(diǎn)E在線段AC上.∠ACB=∠ACD=90°,AC=BC;DC=CE,M,N分別是線段BE,AD上的點(diǎn).
“興趣小組”寫出的兩個(gè)教學(xué)結(jié)論是:①△BCE≌△ACD;②當(dāng)CM,CN分別是△BCE和△ACD的中線時(shí),△MCN是等腰直角三角形.
解決問題
(1)請(qǐng)你結(jié)合圖(1).證明“興趣小組”所寫的兩個(gè)結(jié)論的正確性.
類比探究
受到“興趣小組”的啟發(fā),“實(shí)踐小組”的同學(xué)們寫出如下結(jié)論:如圖(2),當(dāng)∠BCM=∠ACN時(shí),△MCN是等腰直角三角形.
(2)“實(shí)踐小組”所寫的結(jié)論是否正確?請(qǐng)說明理由.
感悟發(fā)現(xiàn)
“奮進(jìn)小組”認(rèn)為:當(dāng)點(diǎn)M,N分別是BE,AD的三等分點(diǎn)時(shí),△MCN仍然是等腰直角三角形請(qǐng)你思考:
(3)“奮進(jìn)小組”所提結(jié)論是否正確?答: (填“正確”、“不正確”或“不一定正確”.)
(4)反思上面的探究過程,請(qǐng)你添加適當(dāng)?shù)臈l作,再寫出使得△MCN是等腰直角三角形的數(shù)學(xué)結(jié)論.(所寫結(jié)論必須正確,寫出1個(gè)即可,不要求證明)
【答案】(1)見解析;(2)實(shí)踐小組”所寫的結(jié)論正確,理由見解析;(3)不一定準(zhǔn)確,理由見解析;(4)答案不唯一,見解析
【解析】
(1)由△BCE≌△ACD,推出BE=AD,∠EBC=∠DAC,因?yàn)锽M=BE,AN=AD,推出BM=AN,再證明△BCM≌△ACN,即可解決問題;
(2)實(shí)踐小組”所寫的結(jié)論正確.只要證明△BCM≌△ACN(ASA),即可解決問題;
(3)“奮進(jìn)小組”認(rèn)為:當(dāng)點(diǎn)M,N分別是BE,AD的三等分點(diǎn)時(shí),△MCN仍然是等腰直角三角形.這個(gè)結(jié)論不一定準(zhǔn)確,分兩種情形說明即可;
(4)答案不唯一.比如:當(dāng)CM,CN分別是△BCE,△ACD的高時(shí),△MCN是等腰直角三角形;當(dāng)CM,CN分別是△BCE,△ACD的角平分線時(shí),△MCN是等腰直角三角形.
(1)在△BCE和△ACD中,
,
∴△BCE≌△ACD(SAS),
∴BE=AD,∠EBC=∠DAC,
∵CM,CN分別是△BCE和△ACD的中線,
∴BM=BE,AN=AD,
∴BM=AN,
在△BCM和△ACN,
,
∴△BCM≌△ACN(SAS),
∴CM=CN,∠BCM=∠ACN,
∵∠BCM+∠MCE=90°,
∴∠ACN+∠MCE=90°,
∴MC⊥CN.
∴△MCN是等腰直角三角形.
(2)實(shí)踐小組”所寫的結(jié)論正確.
理由:∵△BCE≌△ACD,
∴∠EBC=∠DAC,
在△BCM和△CAN中,
,
△BCM≌△ACN(ASA),
∴CM=CN,
∵∠BCM+∠MCE=∠ACB=90°,
∴∠ACN+∠MCE=90°,
∴MC⊥CN.
∴△MCN是等腰直角三角形.
(3)“奮進(jìn)小組”認(rèn)為:當(dāng)點(diǎn)M,N分別是BE,AD的三等分點(diǎn)時(shí),△MCN仍然是等腰直角三角形.這個(gè)結(jié)論不一定準(zhǔn)確.
理由:當(dāng)BM=BE,AN=AD時(shí),△MCN仍然是等腰直角三角形.
當(dāng)BM=BE,DN=AD時(shí),△MCN不是等腰直角三角形.
故答案為不一定準(zhǔn)確.
(4)答案不唯一.比如:當(dāng)CM,CN分別是△BCE,△ACD的高時(shí),△MCN是等腰直角三角形;
當(dāng)CM,CN分別是△BCE,△ACD的角平分線時(shí),△MCN是等腰直角三角形;
理由:只要證明△BCM≌△ACN(AAS),即可推出,∠BCM=∠ACN,推出∠MCN=90°,
∵CM=CN,
∴△MCN是等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)投入13 800元資金購(gòu)進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)和銷售價(jià)如表所示:
類別/單價(jià) | 成本價(jià) | 銷售價(jià)(元/箱) |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)該商場(chǎng)購(gòu)進(jìn)甲、乙兩種礦泉水各多少箱?
(2)全部售完500箱礦泉水,該商場(chǎng)共獲得利潤(rùn)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點(diǎn)F,∠1+∠2=90°.求證:
(1)AB∥CD;
(2)∠2+∠3=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】細(xì)心觀察圖,認(rèn)真分析各式,然后解答問題:
;
;
;
(1)請(qǐng)用含(為正整數(shù))的等式表示上述交化規(guī)律:______;
(2)觀察總結(jié)得出結(jié)論:直角三角形兩條直角邊與斜邊的關(guān)系,用一句話概括為:______;
(3)利用上面的結(jié)論及規(guī)律,請(qǐng)?jiān)趫D中作出等于的長(zhǎng)度;
(4)若表示三角形面積,,,,計(jì)算出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由相同邊長(zhǎng)的小正方形組成的網(wǎng)格圖形,A、B、C都在格點(diǎn)上,利用網(wǎng)格畫圖:(注:所畫線條用黑色簽字筆描黑)
(1)過點(diǎn)C畫AB的平行線;
(2)過點(diǎn)B畫AC的垂線,垂足為點(diǎn)G;過點(diǎn)B畫AB的垂線,交AC的延長(zhǎng)線于H.
(3)點(diǎn)B到AC的距離是線段 的長(zhǎng)度,線段AB的長(zhǎng)度是點(diǎn) 到直線 的距離.
(4)線段BG、AB的大小關(guān)系為:BG AB(填“>”、“<”或“=”),理由是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A在x軸上,△OAB是邊長(zhǎng)為2的等邊三角形,以點(diǎn)O為旋轉(zhuǎn)中心,將△OAB按順時(shí)針方向旋轉(zhuǎn)60°,得到△OA′B′,畫出△OA′B′,寫出點(diǎn)A′,B′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對(duì)稱軸是直線x=1,
①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④若(﹣2,y1),(5,y2)是拋物線上的兩點(diǎn),則y1<y2 .
上述判斷中,正確的是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,D為AB的中點(diǎn),E、F分別在AC、BC上,且DE⊥DF.
求證:AE2+BF2=EF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一塊含角的三角板ABO的一邊BO放在直線MN上,AB邊在直線MN的上方,其中,另一塊含角的三角板POQ的一邊OQ在直線MN上,另一邊OP在直線MN的下方.
現(xiàn)將圖1中的三角板POQ繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn),當(dāng)直線MN恰好為的平分線時(shí),如圖2所示,則的度數(shù)______度;
繼續(xù)將圖2中的三角板繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)至圖3的位置,使得邊OA落在的內(nèi)部,且AO恰好為的平分線時(shí),求的度數(shù);
在上述直角三角板從圖1按順時(shí)針方向旋轉(zhuǎn)至圖位置為止,這個(gè)過程中,若三角板POQ繞點(diǎn)O以每秒的速度勻速旋轉(zhuǎn),當(dāng)三角板POQ的OP邊或OQ邊所在直線平分,則求此時(shí)三角板POQ繞點(diǎn)O旋轉(zhuǎn)的時(shí)間t的值請(qǐng)直接寫出答案.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com