【題目】如圖,將兩個全等的直角三角形△ABD、△ACE拼在一起(圖(1)).令△ABD不動,
(1)若將△ACE繞點A逆時針旋轉(zhuǎn),連接DE,M是DE的中點,連接MB、MC(圖(2)),證明:MB=MC.
(2)若將圖(1)中的CE向上平移,∠CAE不變,連接DE,M是DE的中點,連接MB、MC(圖(3)),判斷MB、MC的數(shù)量關(guān)系,并說明理由.
(3)在(2)中,若∠CAE的大小改變(圖(4)),其他條件不變,則(2)中的MB、MC的數(shù)量關(guān)系還成立嗎?說明理由.
【答案】(1)見解析;(2)MB=MC.理由見解析;(3)MB=MC還成立,見解析.
【解析】
(1)連接AM,根據(jù)全等三角形的對應(yīng)邊相等可得AD=AE,AB=AC,全等三角形對應(yīng)角相等可得∠BAD=∠CAE,再根據(jù)等腰三角形三線合一的性質(zhì)得到∠MAD=∠MAE,然后利用“邊角邊”證明△ABM和△ACM全等,根據(jù)全等三角形對應(yīng)邊相等即可得證;
(2)延長DB、AE相交于E′,延長EC交AD于F,根據(jù)等腰三角形三線合一的性質(zhì)得到BD=BE′,然后求出MB∥AE′,再根據(jù)兩直線平行,內(nèi)錯角相等求出∠MBC=∠CAE,同理求出MC∥AD,根據(jù)兩直線平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根據(jù)等角對等邊即可得證;
(3)延長BM交CE于F,根據(jù)兩直線平行,內(nèi)錯角相等可得∠MDB=∠MEF,∠MBD=∠MFE,然后利用“角角邊”證明△MDB和△MEF全等,根據(jù)全等三角形對應(yīng)邊相等可得MB=MF,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半證明即可.
(1)如圖(2),連接AM,由已知得△ABD≌△ACE,
∴AD=AE,AB=AC,∠BAD=∠CAE.
∵MD=ME,
∴∠MAD=∠MAE,
∴∠MAD-∠BAD=∠MAE-∠CAE,
即∠BAM=∠CAM.
在△ABM和△ACM中,
AB=AC,
∠BAM=∠CAM,
AM=AM,
∴△ABM≌△ACM(SAS),
∴MB=MC.
(2)MB=MC.
理由如下:如圖(3),延長CM交DB于F,延長BM到G,使得MG=BM,連接CG.
∵CE∥BD,
∴∠MEC=∠MDF,∠MCE=∠MFD.
∵M是ED的中點,
∴MD=ME.
在△MCE和△MFD中,
∠MCE=∠MFD,
∠MEC=∠MDF,
MD=ME,
∴△MCE≌△MFD(AAS).
∴MF=MC.
∴在△MFB和△MCG中,
MF=MC,
∠FMB=∠CMG,
BM=MG,
∴△MFB≌△MCG(SAS).
∴FB=GC,∠MFB=∠MCG,
∴CG∥BD,即G、C、E在同一條直線上.
∴∠GCB=90°.
在△FBC和△GCB中,
FB=GC,
∠FBC=∠GCB,
BC=CB,
∴△FBC≌△GCB(SAS).
∴FC=GB.
∴MB=GB=FC=MC.
(3)MB=MC還成立.
如圖(4),延長BM交CE于F,延長CM到G,使得MG=CM,連接BG.
∵CE∥BD,
∴∠MDB=∠MEF,∠MBD=∠MFE.
又∵M是DE的中點,
∴MD=ME.
在△MDB和△MEF中,
∠MDB=∠MEF,
∠MBD=∠MFE,
MD=ME,
∴△MDB≌△MEF(AAS),
∴MB=MF.
∵CE∥BD,
∴∠FCM=∠BGM.
在△FCM和△BGM中,
CM=MG,
∠CMF=∠GMB,
MF=MB,
∴△FCM≌△BGM(SAS).
∴CF=BG,∠FCM=∠BGM.
∴CF//BG,即D、B、G在同一條直線上.
在△CFB和△BGC中,
CF=BG,
∠FCB=∠GBC,
CB=BC,
∴△CFB≌△BGC(SAS).
∴BF=CG.
∴MC=CG=BF=MB.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為D,E.求證:DE=BD+CE;
(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D,A,E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=a,其中a為任意銳角或鈍角,請問結(jié)論DE=BD+CE是否成立?若成立,請你給出證明;若不成立,請說明理由;
(3)如圖3,在(2)的條件下,若a=120°,且△ACF為等邊三角形,試判斷△DEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點M在⊙O上,MD恰好經(jīng)過圓心O,連接MB.
(1)若CD=16,BE=4,求⊙O的直徑;
(2)若∠M=∠D,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是甲、乙兩車在某時段速度隨時間變化的圖象,下列結(jié)論錯誤的是( )
A. 乙前4秒行駛的路程為48米 B. 兩車到第3秒時行駛的路程相等
C. 在0到8秒內(nèi)甲的速度每秒增加4米/秒 D. 在4至8秒內(nèi)甲的速度都大于乙的速度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+3x+4與x軸交于A、B兩點,與y軸交于點C,點D在拋物線上且橫坐標(biāo)為3.
(1)求A、B、C、D的坐標(biāo);
(2)求∠BCD的度數(shù);
(3)求tan∠DBC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.
(1)求證:AE是⊙O的切線;
(2)當(dāng)BC=4時求劣弧AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于霧霾天氣持續(xù)籠罩某地區(qū),口罩市場出現(xiàn)熱賣.某商店用8000元購進(jìn)甲、乙兩種口罩,銷售完后共獲利2800元,其進(jìn)價和售價如下表:
甲種口罩 | 乙種口罩 | |
進(jìn)價(元/袋) | 20 | 25 |
售價(元/袋) | 26 | 35 |
(1)求該商店購進(jìn)甲、乙兩種口罩各多少袋?
(2)該商店第二次仍以原價購進(jìn)甲、乙兩種口罩,購進(jìn)乙種口罩袋數(shù)不變,而購進(jìn)甲種口罩袋數(shù)是第一次的2倍,甲種口罩按原售價出售,而乙種口罩讓利銷售.若兩種口罩銷售完畢,要使第二次銷售活動獲利不少于3680元,則乙種口罩最低售價為每袋多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com