【題目】甲、乙兩人在環(huán)形跑道上同起點、同終點、同方向勻速跑步400米,先到終點的人原地休息.已知甲先出發(fā)2秒.在跑步過程中,甲、乙兩人的距離(單位:)與乙出發(fā)的時間(單位:)之間的關(guān)系如圖所示,下列說法:①甲的速度為;②乙的速度為;③乙出發(fā)時甲、乙兩人之間的距離為;④甲到達終點時乙在終點休息了;⑤,其中的正確的個數(shù)有(

A.1B.2C.3D.4

【答案】A

【解析】

由函數(shù)圖象可以得出a表示乙追上甲的時間,先求出甲的速度為4/秒,乙的速度為400÷80=5/秒,可判斷①②;由追及問題可知b表示乙到終點時甲乙之間的距離40082×4=72米,可判斷③;c表示甲到達終點時乙出發(fā)的時間(400)÷4=18秒,可判斷④;分別求出a、b、c的值,即可判斷⑤.

解:由題意,得:甲的速度為:8÷2=4/秒,故①錯誤;

乙的速度為:400÷80=5/秒,故②錯誤;

a=8÷5-4=8,

b表示乙到終點時甲乙之間的距離:40082×4=72米,故③正確;

秒;

∴乙在終點的休息時間:98=18秒;故④錯誤;

;故⑤錯誤;

∴正確的只有③;

故選:A

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,、是正方形的邊上的兩個動點,滿足,連接于點,連接于點,連接,若正方形的邊長為2,則線段的最小值是(

A.2B.1C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,.點上,連接,折疊矩形,點與點都恰好落在上的點處,折痕是、的對應(yīng)線段交于點,則線段的長度是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由邊長為1的小正方形構(gòu)成的網(wǎng)格,每個小正方形的頂點叫做格點.的頂點在格點上,僅用無刻度尺的直尺在給定網(wǎng)格中畫圖,畫圖過程用虛線表示,畫圖結(jié)果用實線表示,按步驟完成下列問題:

(1)將邊繞點順時針旋轉(zhuǎn)90°得到線段

(2)畫邊的中點;

(3)連接并延長交于點,直接寫出的值;

(4)上畫點,連接,使

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了考查學生的綜合素質(zhì),某市決定:九年級畢業(yè)生統(tǒng)一參加中考實驗操作考試,根據(jù)今年的實際情況,中考實驗操作考試科目為:(物理)、(化學)、(生物),每科試題各為道,考生隨機抽取其中道進行考試.小明和小麗是某校九年級學生,需參加實驗考試.

1)小明抽到化學實驗的概率為

2)若只從考試科目考慮,小明和小麗抽到不同科目的概率為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】松立商店準備從永波機械廠購進甲、乙兩種零件進行銷售,若甲種零件的進價是乙種零件進價的,用1600元單獨購進一種零件時,購進甲種零件的數(shù)量比乙種零件多4件.

1)求每個甲種零件,每個乙種零件的進價分別為多少元?

2)松立商店購進甲、乙兩種零件共102個,準備將零件批發(fā)給零售商.甲種零件的批發(fā)價是100元,乙種零件的批發(fā)價是130元,松立商店計劃從零售商處的獲利超過2284元,通過計算求出松立商店最多給零售商批發(fā)多少個甲種零件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某初中學生為了解該校學生喜歡球類活動的情況,隨機抽取了若干名學生進行問卷調(diào)查(要求每位學生只能填寫一種自己喜歡的球類),并將調(diào)査的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中提供的信息,解答下面的問題

1)參加調(diào)査的學生共有   人,在扇形圖中,表示“其他球類”的扇形圓心角為   度;

2)將條形圖補充完整;

3)若該校有2300名學生,則估計喜歡“足球”的學生共有   人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,,BC的直徑,D任意一點,連接ADBC于點F,EAADDB的延長線于E,連接CD

1)求證:△ABEACD;

2)填空:①當∠CAD的度數(shù)為 時,四邊形ABDC是正方形;

②若四邊形ABDC的面積為4,則AD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABC中,ACB=90°,AC=3,BC=4,延長BC到點D,使BD=BA,PBC邊上一點.點Q在射線BA上,PQ=BP,以點P為圓心,PD長為半徑作P,交AC于點E,連接PQ,設(shè)PC=x

1AB=    CD=    ,當點QP上時,求x的值;

2x為何值時,PAB相切?

3)當PC=CD時,求陰影部分的面積;

4)若PABC的三邊有兩個公共點,直接寫出x的取值范圍.

查看答案和解析>>

同步練習冊答案