【題目】計算:
(1)2﹣(﹣4)+3
(2)﹣32÷(﹣2)3
(3)(﹣+)×12
(4)﹣13+[(﹣4)2﹣(1﹣32)×2]
【答案】(1)9;(2)4;(3)7;(4)31
【解析】
(1)先化簡,再計算加減法即可求解;
(2)先算乘方,再算乘除,最后算加減;同級運算,應按從左到右的順序進行計算;如果有括號,要先做括號內的運算;
(3)根據乘法分配律簡便計算;
(4)先算乘方,再算乘除,最后算加減;同級運算,應按從左到右的順序進行計算;如果有括號,要先做括號內的運算.
(1)2﹣(﹣4)+3=2+4+3=9;
(2)﹣32÷(﹣2)3=﹣32÷(﹣8)=4;
(3)(﹣+)×12=×12﹣×12+×12=6﹣8+9=7;
(4)﹣13+[(﹣4)2﹣(1﹣32)×2]
=﹣1+[16﹣(1﹣9)×2]
=﹣1+(16+8×2)
=﹣1+(16+16)
=﹣1+32
=31.
科目:初中數學 來源: 題型:
【題目】請閱讀下列材料,并完成相應的任務。
阿基米德(Archimedes,公元前287~公元前212年,古希臘)是有史以來最偉大的數學家之一.
阿基米德折弦定理:如圖1,AB和BC是圓O的兩條弦(即折線ABC是圓的一條折弦), BC>AB,M是 的中點,即CD=AB+BD。下面是運用“截長法”證明CD=AB+BD的部分過程。
證明:如圖2,在CB上截取CG=AB,連接MA、MB、MC、MG。因為M是弧ABC的中點,所以MA=MC.
任務:
(1)請按照上面的證明思路,完整證明阿基米德折弦定理,即CD=AB+BD。
(2)如圖3,已知等邊△ABC內接于圓O,AB=1,D為 上一點,∠ABD=45°,AE⊥BD于點E,則△BDC的周長是.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】仔細閱讀下面的例題:
例題:已知二次三項式x2-4x+m有一個因式是x+3,求另一個因式以及m的值.
解:設另一個因式為x+n,則
x2-4x+m=(x+3)(x+n),
∴x2-4x+m=x2+(n+3)x+3n,
∴,解得,
∴另一個因式為x-7,m的值為-21.
問題:仿照以上方法解答下面的問題:
已知二次三項式2x2+3x-k有一個因式是2x-5,求另一個因式以及k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=﹣ x2﹣ x+2與x軸交于A、B兩點,與y軸交于點C
(1)求點A,B,C的坐標;
(2)點E是此拋物線上的點,點F是其對稱軸上的點,求以A,B,E,F為頂點的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點M,使得△ACM是等腰三角形?若存在,請求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了慶祝即將到來的2018年國慶節(jié),某校舉行了書法比賽,賽后整理了參賽同學的成績,并制作了如下兩幅不完整的統(tǒng)計圖表
分數段 | 頻數 | 頻率 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | m | 0.45 |
80≤x<90 | 60 | n |
90≤x<100 | 20 | 0.1 |
請根據以上圖表提供的信息,解答下列問題:
(1)這次共調查了 名學生;表中的數m= ,n= .
(2)請補全頻數直方圖;
(3)若繪制扇形統(tǒng)計圖,則分數段60≤x<70所對應的扇形的圓心角的度數是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E是AB上一點,點F是AD延長線上一點,且DF=BE,連接CE、CF.
(1)求證:CE=CF.
(2)在圖1中,若點G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
(3)根據你所學的知識,運用(1)、(2)解答中積累的經驗,完成下列各題,如圖2,在四邊形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,且∠DCE=45°.
①若AE=6,DE=10,求AB的長;
②若AB=BC=9,BE=3,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD與正方形AEFG起始時互相重合,現將正方形AEFG繞點A逆時針旋轉,設旋轉角∠BAE=α(0°<α<360°),則當正方形的頂點F落在正方形的對角線AC或BD所在直線上時,α= .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com