分析 設(shè)方程x2-10x+k=0的兩根為a、b,根據(jù)一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系得到a+b=10,然后討論:當(dāng)a和b為腰,即a=b,則a=b=5,求出底邊上的高,即可得出三角形的面積;當(dāng)a為腰,b為底邊:a=4,則b=6;b=4,則a=6;求出底邊上的高,即可得出三角形的面積.
解答 解:設(shè)方程x2-10x+k=0的兩根為a、b,
∴a+b=10,
而a、b是一邊為3的等腰三角形的兩邊長(zhǎng),
當(dāng)a和b為腰,即a=b,則a=b=5,
由勾股定理得:底邊上的高=$\sqrt{{5}^{2}-{2}^{2}}$=$\sqrt{21}$,
∴三角形的面積=$\frac{1}{2}$×4×$\sqrt{21}$=2$\sqrt{21}$;
當(dāng)a為腰,b為底邊:
①a=4,則b=6,
由勾股定理得:底邊上的高=$\sqrt{{4}^{2}-{3}^{2}}$=$\sqrt{7}$,
∴三角形的面積=$\frac{1}{2}$×6×$\sqrt{7}$=3$\sqrt{7}$;
②b=4,則a=6,
由勾股定理得:底邊上的高=$\sqrt{{6}^{2}-{2}^{2}}$=4$\sqrt{2}$,
∴三角形的面積=$\frac{1}{2}$×4×4$\sqrt{2}$=8$\sqrt{2}$.
綜上所述,這個(gè)三角形的面積為2$\sqrt{21}$或3$\sqrt{7}$或8$\sqrt{2}$.
點(diǎn)評(píng) 本題考查了勾股定理、一元二次方程的根與系數(shù)的關(guān)系、等腰三角形的性質(zhì)、三角形面積的計(jì)算;熟練掌握等腰三角形的性質(zhì)和勾股定理,注意分類討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 72xyz2 | B. | 108xyz | C. | 72xyz | D. | 96xyz2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2(a2+2) | B. | 2(a2-2) | C. | 2a3 | D. | 2a6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com