【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點,與y軸相交于點C,連結(jié)BC,點P為拋物線上一動點,過點P作x軸的垂線l,交直線BC于點G,交x軸于點E.

(1)求拋物線的表達式;
(2)當P位于y軸右邊的拋物線上運動時,過點C作CF⊥直線l,F(xiàn)為垂足,當點P運動到何處時,以P,C,F(xiàn)為頂點的三角形與△OBC相似?并求出此時點P的坐標;
(3)如圖2,當點P在位于直線BC上方的拋物線上運動時,連結(jié)PC,PB,請問△PBC的面積S能否取得最大值?若能,請求出最大面積S,并求出此時點P的坐標,若不能,請說明理由.

【答案】
(1)

解:將點A(﹣1,0),B(4,0)的坐標代入函數(shù)的表達式得:

解得:b=3,c=4.

拋物線的解析式為y=﹣x2+3x+4.


(2)

解:如圖1所示:

∵令x=0得y=4,

∴OC=4.

∴OC=OB.

∵∠CFP=∠COB=90°,

∴FC=PF時,以P,C,F(xiàn)為頂點的三角形與△OBC相似.

設點P的坐標為(a,﹣a2+3a+4)(a>0).

則CF=a,PF=|﹣a2+3a+4﹣4|=|a2﹣3a|.

∴|a2﹣3a|=a.

解得:a=2,a=4.

∴點P的坐標為(2,6)或(4,0).


(3)

解:如圖2所示:連接EC.

設點P的坐標為(a,﹣a2+3a+4).則OE=a,PE=﹣a2+3a+4,EB=4﹣a.

∵S四邊形PCEB= OBPE= ×4(﹣a2+3a+4),SCEB= EBOC= ×4×(4﹣a),

∴SPBC=S四邊形PCEB﹣SCEB=2(﹣a2+3a+4)﹣2(4﹣a)=﹣2a2+8a.

∵a=﹣2<0,

∴當a=2時,△PBC的面積S有最大值.

∴P(2,6),△PBC的面積的最大值為8


【解析】(1)將點A(﹣1,0),B(4,0)的坐標代入拋物線的解析式,求得b、c的值即可;(2)先由函數(shù)解析式求得點C的坐標,從而得到△OBC為等腰直角三角形,故此當CF=PF時,以P,C,F(xiàn)為頂點的三角形與△OBC相似.
設點P的坐標為(a,﹣a2+3a+4).則CF=a,PF=﹣a2+3a,接下來列出關(guān)于a的方程,從而可求得a的值,于是可求得點P的坐標;(3)連接EC.設點P的坐標為(a,﹣a2+3a+4).則OE=a,PE=﹣a2+3a+4,EB=4﹣a.然后依據(jù)SPBC=S四邊形PCEB﹣SCEB列出△PBC的面積與a的函數(shù)關(guān)系式,從而可求得三角形的最大面積.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交AD的延長線于點E.若AB=12,BM=5,則DE的長為(
A.18
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,對稱軸為直線x= 的拋物線經(jīng)過B(2,0)、C(0,4)兩點,拋物線與x軸的另一交點為A

(1)求拋物線的解析式;
(2)若點P為第一象限內(nèi)拋物線上的一點,設四邊形COBP的面積為S,求S的最大值;
(3)如圖2,若M是線段BC上一動點,在x軸是否存在這樣的點Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學校組織的游藝會上,投飛標游藝區(qū)游戲區(qū)規(guī)則如下,如圖投到A區(qū)和B區(qū)的得分不同,A區(qū)為小圓內(nèi)部分,B區(qū)為大圓內(nèi)小圓外部分(擲中一次記一個點)現(xiàn)統(tǒng)計小華、小明和小芳擲中與得分情況如圖所示.
(1)求擲中A區(qū)、B區(qū)一次各得多少分?
(2)依此方法計算小明的得分為多少分?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面上,將邊長相等的正三角形、正方形、正五邊形、正六邊形的一邊重合并疊在一起,如圖,則∠3+∠1﹣∠2=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC是等邊三角形,點D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF,CF,連接BE并延長交CF于點G.下列結(jié)論: ①△ABE≌△ACF;②BC=DF;③SABC=SACF+SDCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 . (填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,EF與AB、CD分別相交于點E、F,EP⊥EF,與∠EFD的平分線FP相交于點P,且∠BEP=50°,則∠EPF=( )度.
A.70
B.65
C.60
D.55

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:
在一個三角形中,各邊和它所對角的正弦的比相等, = = ,利用上述結(jié)論可以求解如下題目:
在△ABC中,∠A、∠B、∠C的對邊分別為a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵ = ∴b= = = =3
理解應用:
如圖,甲船以每小時30 海里的速度向正北方向航行,當甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,且乙船從B1處按北偏東15°方向勻速直線航行,當甲船航行20分鐘到達A2時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距10 海里.

(1)判斷△A1A2B2的形狀,并給出證明;
(2)求乙船每小時航行多少海里?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,AD=6,點E、F分別在邊CD、AB上.

(1)若DE=BF,求證:四邊形AFCE是平行四邊形;
(2)若四邊形AFCE是菱形,求菱形AFCE的周長.

查看答案和解析>>

同步練習冊答案