已知雙曲線y=
k
x
與直線y=
1
4
x
相交于A、B兩點.第一象限上的點M(m,n)(在精英家教網(wǎng)A點左側(cè))是雙曲線y=
k
x
上的動點.過點B作BD∥y軸交x軸于點D.過N(0,-n)作NC∥x軸交雙曲線y=
k
x
于點E,交BD于點C.
(1)若點D坐標是(-8,0),求A、B兩點坐標及k的值;
(2)若B是CD的中點,四邊形OBCE的面積為4,求直線CM的解析式;
(3)設直線AM、BM分別與y軸相交于P、Q兩點,且MA=pMP,MB=qMQ,求p-q的值.
分析:(1)將D的坐標可得B的橫坐標,代入解析式可得B的坐標,又有A、B兩點關于原點對稱,易得k的值;
(2)根據(jù)題意B是CD的中點,A、B、M、E四點均在雙曲線上,可得BCD的坐標關于mn的表達式,進而可以表示出矩形的面積;代入數(shù)據(jù)可得答案;
(3)分別作AA1⊥x軸,MM1⊥x軸,垂足分別為A1、M1,設A點的橫坐標為a,則B點的橫坐標為-a,易得pq關于a的關系式,作p-q可得p-q=
a-m
m
-
m+a
m
=-2
解答:解:(1)∵D(-8,0),
∴B點的橫坐標為-8,代入y=
1
4
x中,得y=-2,
∴B點坐標為(-8,-2),
而A、B兩點關于原點對稱,∴A(8,2),
∴k=8×2=16;

(2)∵N(0,-n),B是CD的中點,A、B、M、E四點均在雙曲線上,
∴mn=k,B(-2m,-
n
2
),C(-2m,-n),E(-m,-n),
∴S矩形DCNO=2mn=2k,
∴S△DBO=
1
2
mn=
1
2
k,
∴S△OEN=
1
2
mn=
1
2
k
,
∴S四邊形OBCE=S矩形DCNO-S△DBO-S△OEN=k,
∴k=4,
由直線y=
1
4
x及雙曲線y=
4
x
,得A(4,1),B(-4,-1),
∴C(-4,-2),M(2,2),
設直線CM的解析式是y=ax+b,
由C、M兩點在這條直線上,得
-4a+b=-2
2a+b=2
,
解得a=b=
2
3
,
∴直線CM的解析式是y=
2
3
x+
2
3


(3)如圖1,分別作AA1⊥x軸,MM1⊥x軸,垂足分別為A1、M1,精英家教網(wǎng)
設A點的橫坐標為a,則B點的橫坐標為-a,
于是p=
MA
MP
=
A1M1
M1O
=
a-m
m
,
同理q=
MB
MQ
=
m+a
m
,
∴p-q=
a-m
m
-
m+a
m
=-2

本題也可用相似求解,如圖,酌情給分.
精英家教網(wǎng)
點評:此題綜合考查了反比例函數(shù),正比例函數(shù)等多個知識點此題難度稍大,綜合性比較強,注意對各個知識點的靈活應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知雙曲線y=
k
x
與直線y=
1
4
x
相交于A,B兩點.第一象限上的點M(m,n)(在A點左側(cè))是雙曲線y=
k
x
上的動點.過點B作BD∥y軸交x軸于點D.過N(0,-n)作NC∥x軸交雙曲線y=
k
x
于點E,交BD于點C.若B是CD的中點,四邊形OBCE的面積為4,則直線CM的解析式為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陸良縣模擬)已知雙曲線y=
kx
與拋物線y=ax2+bx+c交于A(2,3)、B(m,2)、c(-3,n)三點.
(1)求m、n的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•竹溪縣模擬)如圖1,已知雙曲線y=
k
x
與直線y=
1
2
x
交于A,B兩點,點A在第一象限,點A的橫坐標為4.

(1)求k的值;
(2)若雙曲線上一點C的縱坐標為8,求△AOC的面積;
(3)如圖2,過原點的另一條直線交雙曲線于P、Q兩點,若由點A、B、P、Q為頂點的四邊形面積為24,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知雙曲線y=
kx
與直線y=2x-3相交于點A(2,m),求:雙曲線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知雙曲線y=
k
x
與直線y=
1
4
x
相交于A、B兩點.第一象限上的點M(m,n)(在A點左側(cè))是雙曲線y=
k
x
上的動點.過點B作BD∥y軸交x軸于點D.過N(0,-n)作NC∥x軸交雙曲線y=
k
x
于點E,交BD于點C.
(1)若點A坐標是(8,2),求B點坐標及反比例函數(shù)解析式.
(2)過A點作AQ垂直于y軸交于Q點,設P點從D點出發(fā)沿D→C→N路線以1個單位長度的速度運動,DC長為4.求△AQP的面積S與運動時間t的關系式,并求出S的最大值.
(3)若B是CD的中點,四邊形OBCE的面積為4,求直線CM的解析式.

查看答案和解析>>

同步練習冊答案