【題目】誰更合理?
某種牙膏上部圓的直徑為2.6cm,下部底邊的長為4cm,如圖,現(xiàn)要制作長方體的牙膏盒,牙膏盒底面是正方形,在手工課上,小明、小亮、小麗、小芳制作的牙膏盒的高度都一樣,且高度符合要求.不同的是底面正方形的邊長,他們制作的邊長如下表:
制作者 | 小明 | 小亮 | 小麗 | 小芳 |
正方形的邊長 | 2cm | 2.6cm | 3cm | 3.4cm |
(1)這4位同學制作的盒子都能裝下這種牙膏嗎?()
(2)若你是牙膏廠的廠長,從節(jié)約材料又方便取放牙膏的角度來看,你認為誰的制作更合理?并說明理由.
【答案】(1)小麗和小芳的可以,理由見解析;(2)小麗制作的牙膏盒更合理,理由見解析
【解析】
(1)分別求出小明、小亮、小麗、小芳制作的牙膏盒的底面正方形的對角線長,然后比較大小即可得出結論;
(2)從節(jié)約材料又方便取放牙膏的角度來看,應取能裝入牙膏的牙膏盒的底面正方形的邊長又節(jié)約材料的方案.
解:(1)小麗和小芳的可以
要把牙膏放入牙膏盒內(nèi),則牙膏盒底面對角線長應大于或等于4cm.
小明:22+22<42,小亮:+<42
小麗:32+32>42,小芳:+>42
所以小麗和小芳制作的盒子能裝下這種牙膏.
(2)小麗制作的牙膏盒更合理.因為她制作的盒子既節(jié)約材料又方便取放牙膏.
科目:初中數(shù)學 來源: 題型:
【題目】大小兩種貨車運送360臺機械設備,有三種運輸方案.
方案一:設備的用大貨車運送,其余用小貨車運送,需要貨車27輛.
方案二:設備的用大貨車運送,其余用小貨車運送,需要貨車28輛.
方案三:設備的用大貨車運送,其余用小貨車運送,需要貨車26輛.
(1)每輛大、小貨車各可運送多少臺機械設備?
(2)如果大貨車運費比小貨車高m%(m>0),請你從中選擇一種方案,使得運費最低,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為美化市容市貌,我市在春節(jié)前夕計劃在市區(qū)幾個公園建造、兩種型號花燈供市民觀賞,根據(jù)預算,共需資金萬元.若建造一個種花燈和兩個類種花燈共 需資金萬元;建造兩個種花燈和一個種花燈共需資金萬元.
(1)問建造一個種型號花燈和一個種型號花燈所需資金分別是多少萬元?
(2)若建造種型號花燈不超過個,則種型號花燈至少要建造多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ACB中,有一點P在AC上移動,若AB=AC=5,BC=6,則AP+BP+CP的最小值為( )
A.9.6B.9.8C.11D.10.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】推理填空:已知如圖,DG⊥BC于G,AC⊥BC于C,FE⊥AB于E,∠1=∠2,請說明CD⊥AB的理由:
解:∵DG⊥BC,AC⊥BC(已知)
∴∠DGC=∠ACB=90°(垂直定義
∴∠DGC+∠ACB=180°
∴DG∥AC(_________________________)
∴∠2=∠DCA(兩直線平行,內(nèi)錯角相等)
∵∠1=∠2(已知)
∴∠______=∠_____(等量代換)
∴EF∥CD(_____________________)
∴∠AEF=∠ADC(___________________)
∴FE⊥AB(已知)
∴AEF=90°(垂直定義)
∴∠ADC=90°
∴CD⊥AB(垂直定義)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C;平移△ABC,若點A的對應點A2的坐標為(0,-4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉可以得到△A2B2C2 , 請直接寫出旋轉中心的坐標;
(3)在x軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的面積為16,BC=8,現(xiàn)將△ABC沿直線向右平移a(a<8)個單位到△DEF的位置.
(1)求△ABC的BC邊上的高.
(2)連結AE、AD,設AB=5
①求線段DF的長.
②當△ADE是等腰三角形時,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為做好防汛工作,防汛指揮部決定對某水庫的水壩進行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.
(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別在BC、CD上,且BE=CF,連接BF、DE交于點M,延長ED到H使DH=BM,連接AM,AH,則以下四個結論:
①△BDF≌△DCE;②∠BMD=120°;③△AMH是等邊三角形;④S四邊形ABCD= AM2.
其中正確結論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com