【題目】如圖,已知AB是圓O的直徑,弦CDAB,垂足為H,在CD上有點N滿足CN=CA,AN交圓O于點F,過點FAC的平行線交CD的延長線于點M,交AB的延長線于點E

1)求證:EM是圓O的切線;

2)若ACCD=58,AN=3,求圓O的直徑長度.

3)在(2)的條件下,直接寫出FN的長度.

【答案】1)證明見解析;(225;(3

【解析】

1)連接FO,根據(jù)等邊對等角可得∠CAN=CNA,利用兩直線平行內(nèi)錯角相等,可得 CAN=MFN ,從而可得∠MFN=FNM=CAN,利用直角定義可得∠MFO=90°,即證直線ME與圓O相切.

2)根據(jù)垂徑定理可得CH=DH=4a , AH=3a.利用勾股定理可得AN的值,從而求出a=3,即得 AH、CH的值 .

設圓的半徑為r,則OH=r9,在RtOCH中,利用勾股定理可得 , 解出r值,即得直徑.

3)連接BF,可證ANH∽△ABF,可得 , 代入數(shù)據(jù)可求出AF= , FN=AF-AN,即得AN的長度.

1)證明:連接FO

AN=AC,

∴∠CAN=CNA

ACME,

∴∠CAN=MFN

∵∠CNA=FNM

∴∠MFN=FNM=CAN

又∵CDAB,

∴∠HAN+HNA=90°

AO=FO,

∴∠OAF=OFA

∴∠OFA+MFN=90°,即∠MFO=90°

∴直線ME與圓O相切

2)解:連接OC,

ACCD=58,設AC=5 a,則CD=8 a,

CDAB

CH=DH=4 a,AH=3 a

CA=CN,

NH= a,

AN=

a=3,AH=3, a=9,CH=4 ,a=12

設圓的半徑為r,則OH=r9

RtOCH中,OC=rCH=12,OH=r9

OC2=CH2+OH2

解得:r= ,

∴圓O的直徑的長度為2r=25

3)連接BF,根據(jù)(2)

可得△ANH∽△ABF

可得

解得AF=

FN=AF-AN=-3 =

FN=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=ax2-4ax+c(a0)y軸交于點A,將點A向右平移2個單位長度,得到點B.直線x軸,y軸分別交于點C,D.

1)求拋物線的對稱軸.

2)若點A與點D關于x軸對稱.

①求點B的坐標.

②若拋物線與線段BC恰有一個公共點,結合函數(shù)圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解七年級學生體育測試情況,以七年級(1)班學生的體育測試成績?yōu)闃颖,?/span>AB、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制如下的統(tǒng)計圖,請你結合圖中所給的信息解答下列問題:

(說明:A級:90~100分;B級:75~89分;C級:60~74分;D級:60分以下)

1)請把條形統(tǒng)計圖補充完整;

2)扇形統(tǒng)計圖中D級所在的扇形的圓心角度數(shù)是 ;

3)若該校七年級有600名學生,請用樣本估計體育測試中A級學生人數(shù)約為多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以AD為直徑的半圓O經(jīng)過RtABC斜邊AB的兩個端點,交直角邊AC于點E,BE是半圓弧的三等分點,弧BE的長為π,則圖中陰影部分的面積為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1E是正方形ABCDAB上的一點,連接BD、DE,將∠BDE繞點D逆時針旋轉(zhuǎn)90°,旋轉(zhuǎn)后角的兩邊分別與射線BC交于點F和點G

①線段DBDG的數(shù)量關系是   ;

②寫出線段BE,BFDB之間的數(shù)量關系.

2)當四邊形ABCD為菱形,∠ADC60°,點E是菱形ABCDAB所在直線上的一點,連接BDDE,將∠BDE繞點D逆時針旋轉(zhuǎn)120°,旋轉(zhuǎn)后角的兩邊分別與射線BC交于點F和點G

①如圖2,點E在線段AB上時,請?zhí)骄烤段BEBFBD之間的數(shù)量關系,寫出結論并給出證明;

②如圖3,點E在線段AB的延長線上時,DE交射線BC于點M,若BE1,AB2,直接寫出線段GM的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點為點

1)求證:不論為何實數(shù),該拋物線與軸總有兩個不同的交點;

2)若拋物線的對稱軸為直線,求的值和點坐標;

3)如圖,直線與(2)中的拋物線并于兩點,并與它的對稱軸交于點,直線交直線于點,交拋物線于點.求當為何值時,以為頂點的四邊形為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有大小兩種貨車,5輛大貨車與3輛小貨車一次可以運貨21噸,3輛大貨車與2輛小貨車一次可以運貨13噸.

1)每輛大貨車和每輛小貨車一次各可以運貨多少噸?

2)現(xiàn)有這兩種貨車共10輛,要求一次運貨不低于23噸,則其中大貨車至少多少輛?

3)日前有20噸貨物需要運輸,欲租用這兩種貨車運送,要求全部貨物一次運完且每輛車必須裝滿.已知每輛大貨車一次運貨租金為400元,每輛小貨車一次運貨租金為200元,請列出所有的運輸方案井求出最少租金

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為△ABC外接圓O的直徑,點P是線段CA延長線上一點,點E在圓上且滿足PE2=PAPC,連接CE,AEOE,OECA于點D

1)求證:△PAE∽△PEC;

2)求證:PEO的切線;

3)若∠B=30°,,求證:DO=DP

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,熱氣球的探測器顯示,從熱氣球A處看一棟樓頂部B處的仰角度數(shù)為α,看這棟樓底部C處的俯角度數(shù)為β,熱氣球A處與樓的水平距離為100m,則這棟樓的高度表示為(

A.100(tanα+tanβ)mB.100(sinα+sinβ)mC.D.

查看答案和解析>>

同步練習冊答案