【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.
(1)作△ABC關(guān)于點C成中心對稱的△A1B1C1,并直接寫出A1、B1、C1各點的坐標(biāo);
(2)將△A1B1C1向右平移4個單位,作出平移后的△A2B2C2.
【答案】(1)作圖見解析;A1(2,1),B1(1,3),C1(0,2);(2)作圖見解析.
【解析】
(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B關(guān)于點C成中心對稱的點A1、B1的位置,然后與點C1(即點C)順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出各點的坐標(biāo);
(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A1、B1、C1向右平移4個單位的對應(yīng)點A2、B2、C2的位置,然后順次連接即可.
解:(1)△A1B1C1如圖所示,
A1(2,1),B1(1,3),C1(0,2);
(2)△A2B2C2如圖所示.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).
(1)求點C的坐標(biāo);
(2)將△ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點的對應(yīng)點B'、C'正好落在某反比例函數(shù)圖象上.請求出這個反比例函數(shù)和此時的直線B'C'的解析式.
(3)若把上一問中的反比例函數(shù)記為y1,點B′,C′所在的直線記為y2,請直接寫出在第一象限內(nèi)當(dāng)y1<y2時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BA=BC=20cm,AC=30cm,點P從A點出發(fā),沿著AB以每秒4cm的速度向B點運(yùn)動;同時點Q從C點出發(fā),沿CA以每秒3cm的速度向A點運(yùn)動,設(shè)運(yùn)動時間為x秒.
(1)當(dāng)CQ=10時,求的值.
(2)當(dāng)x為何值時,PQ∥BC;
(3)是否存在某一時刻,使△APQ∽△CQB?若存在,求出此時AP的長,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點A的坐標(biāo)為(3,0),頂點B在y軸正半軸上,頂點D在x軸負(fù)半軸上.若拋物線y=-x2-5x+c經(jīng)過點B、C,則菱形ABCD的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧交AB于M、AC于N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于D,下列四個結(jié)論:
①AD是∠BAC的平分線;
②∠ADC=60°;
③點D在AB的中垂線上;
④S△ACD:S△ACB=1:3.
其中正確的有( 。
A. 只有①②③ B. 只有①②④ C. 只有①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù),其中.
(1)若點在y1的圖象上.求a的值:
(2)當(dāng)時.若函數(shù)有最大值2.求y1的函數(shù)表達(dá)式;
(3)對于一次函數(shù),其中,若對- -切實數(shù)x, 都成立,求a,m需滿足的數(shù)量關(guān)系及 a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,兩內(nèi)角平分線和相交于點.
(1)若,求的度數(shù);
(2)若直線過點,與、分別相交于點、,且,求的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是△ABC內(nèi)一點,連接OB、OC,線段AB、OB、OC、AC的中點分別為D、E、F、G.
(1)判斷四邊形DEFG的形狀,并說明理由;
(2)若M為EF的中點,OM=2,∠OBC和∠OCB互余,求線段BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com