【題目】如圖所示的平面直角坐標(biāo)系中,已知A(0,-3),B(4,1),C(-5,3)
(1) 求三角形ABC的面積;
(2) 點(diǎn)M是平面直角坐標(biāo)系第一象限內(nèi)的一動(dòng)點(diǎn),點(diǎn)M的縱坐標(biāo)為3,三角形BCM的面積為6,求點(diǎn)M的坐標(biāo);
(3) 記BC與y軸的交點(diǎn)為D,求點(diǎn)D的坐標(biāo)(寫(xiě)出具體解答過(guò)程).
【答案】(1)22;(2)M(1,3);(3) .
【解析】
(1)用矩形的面積減去三個(gè)直角三角形的面積即可;
(2)根據(jù)三角形BCM的面積為6,求出CM的長(zhǎng),進(jìn)而可求出點(diǎn)M的坐標(biāo);
(3)根據(jù)三角形ABC的面積=三角形ABD的面積+三角形ACD的面積,求出AD的長(zhǎng),即可求出點(diǎn)D的坐標(biāo).
(1)S△ABC =9×6-= 22;
(2)∵,
∴CM=6;
∴點(diǎn)M的橫坐標(biāo)=6-5=1,
∴M(1,3);
(3)∵,
∴AD=,
∴OD= -3=,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(﹣4,n),B(4﹣n,﹣4)是直線(xiàn)y=kx+b和雙曲線(xiàn)y=的兩個(gè)交點(diǎn).
(1)求兩個(gè)函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫(xiě)出不等式kx+b﹣≥0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,過(guò)點(diǎn)A作AE⊥CD,交CD的延長(zhǎng)線(xiàn)于點(diǎn)E,DA平分∠BDE.
(1)求證:AE是⊙O的切線(xiàn);
(2)已知AE=8cm,CD=12cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,已知直線(xiàn)m平行于直線(xiàn)n,折線(xiàn)ABC是夾在m與n之間的一條折線(xiàn),則、、的度數(shù)之間有什么關(guān)系?為什么?
(2)如圖,直線(xiàn)m依然平行于直線(xiàn)n,則此時(shí)、、、之間有什么關(guān)系?(只需寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,.點(diǎn)在上,點(diǎn)在的延長(zhǎng)線(xiàn)上,連接FD并延長(zhǎng)交BC于點(diǎn)E,若∠BED=2∠ADC,AF=2,DF=7,則的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是長(zhǎng)方形, ∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=4,AD=BC=6,點(diǎn)A的坐標(biāo)為(3,2).動(dòng)點(diǎn)P的運(yùn)動(dòng)速度為每秒a個(gè)單位長(zhǎng)度,動(dòng)點(diǎn)Q的運(yùn)動(dòng)速度為每秒b個(gè)單位長(zhǎng)度,且.設(shè)運(yùn)動(dòng)時(shí)間為t,動(dòng)點(diǎn)P、Q相遇則停止運(yùn)動(dòng).
(1) 求a,b的值;
(2) 動(dòng)點(diǎn)P,Q同時(shí)從點(diǎn)A出發(fā),點(diǎn)P沿長(zhǎng)方形ABCD的邊界逆時(shí)針?lè)较蜻\(yùn)動(dòng),點(diǎn)Q沿長(zhǎng)方形ABCD的邊界順時(shí)針?lè)较蜻\(yùn)動(dòng),當(dāng)t為何值時(shí)P、Q兩點(diǎn)相遇?求出相遇時(shí)P、Q所在位置的坐標(biāo);
(3) 動(dòng)點(diǎn)P從點(diǎn)A出發(fā),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)D出發(fā):
①若點(diǎn)P、Q均沿長(zhǎng)方形ABCD的邊界順時(shí)針?lè)较蜻\(yùn)動(dòng),t為何值時(shí),P、Q兩點(diǎn)相遇?求出相遇時(shí)P、Q所在位置的坐標(biāo);
②若點(diǎn)P、Q均沿長(zhǎng)方形ABCD的邊界逆時(shí)針?lè)较蜻\(yùn)動(dòng),t為何值時(shí),P、Q兩點(diǎn)相遇?求出相遇時(shí)P、Q所在位置的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出:如何將一個(gè)長(zhǎng)為17,寬為1的長(zhǎng)方形經(jīng)過(guò)剪一剪,拼一拼,形成一個(gè)正方形.(下列所有圖中每個(gè)小方格的邊長(zhǎng)都為1,剪拼過(guò)程中材料均無(wú)剩余)
問(wèn)題探究:我們從長(zhǎng)為5,寬為1的長(zhǎng)方形入手.
(1)如圖①是一個(gè)長(zhǎng)為5,寬為1的長(zhǎng)方形.把這個(gè)長(zhǎng)方形剪一剪、拼一拼后形成正方形,則正方形的面積應(yīng)為 , 設(shè)正方形的邊長(zhǎng)為a,則a= .
(2)我們可以把有些帶根號(hào)的無(wú)理數(shù)的被開(kāi)方數(shù)表示成兩個(gè)正整數(shù)平方和的形式,比如 = = .類(lèi)比此,可以將(1)中的a表示成a= .
(3) = 的幾何意義可以理解為:以長(zhǎng)度2和3為直角邊的直角三角形的斜邊長(zhǎng)為 ;類(lèi)比此,(2)中的a可以理解為以長(zhǎng)度和為直角邊的直角三角形斜邊的長(zhǎng).
(4)剪一剪:由(3)可畫(huà)出如圖②的分割線(xiàn),把長(zhǎng)方形分成A、B、C、D、E五部分.
(5)拼一拼:把圖②中五部分拼接得到如圖③的正方形.
問(wèn)題解決:仿照上面的探究方法請(qǐng)把圖④中長(zhǎng)為17,寬為1的長(zhǎng)方形剪一剪,在圖⑤中畫(huà)出拼成的正方形.(說(shuō)明:圖④的分割過(guò)程不作評(píng)分要求,只對(duì)圖⑤中畫(huà)出的最終結(jié)果評(píng)分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料,回答問(wèn)題
在邊長(zhǎng)為1的正方形ABCD中,E是AB的中點(diǎn),CF⊥DE,F(xiàn)為垂足.
(1)△CDF與△DEA是否相似?說(shuō)明理由;
(2)求CF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com