【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點(diǎn)F,過(guò)點(diǎn)E作直線EP與CD的延長(zhǎng)線交于點(diǎn)P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長(zhǎng).

【答案】
(1)證明:如圖,連接OE.

∵CD是圓O的直徑,

∴∠CED=90°.

∵OC=OE,

∴∠1=∠2.

又∵∠PED=∠C,即∠PED=∠1,

∴∠PED=∠2,

∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,

∴OE⊥EP,

又∵點(diǎn)E在圓上,

∴PE是⊙O的切線


(2)證明:∵AB、CD為⊙O的直徑,

∴∠AEB=∠CED=90°,

∴∠3=∠4(同角的余角相等).

又∵∠PED=∠1,

∴∠PED=∠4,

即ED平分∠BEP


(3)解:設(shè)EF=x,則CF=2x,

∵⊙O的半徑為5,

∴OF=2x﹣5,

在RT△OEF中,OE2=OF2+EF2,即52=x2+(2x﹣5)2,

解得x=4,

∴EF=4,

∴BE=2EF=8,CF=2EF=8,

∴DF=CD﹣CF=10﹣8=2,

∵AB為⊙O的直徑,

∴∠AEB=90°,

∵AB=10,BE=8,

∴AE=6,

∵∠BEP=∠A,∠EFP=∠AEB=90°,

∴△AEB∽△EFP,

,即 ,

∴PF= ,

∴PD=PF﹣DF= ﹣2=


【解析】(1)如圖,連接OE.欲證明PE是⊙O的切線,只需推知OE⊥PE即可;(2)由圓周角定理得到∠AEB=∠CED=90°,根據(jù)“同角的余角相等”推知∠3=∠4,結(jié)合已知條件證得結(jié)論;(3)設(shè)EF=x,則CF=2x,在RT△OEF中,根據(jù)勾股定理得出52=x2+(2x﹣5)2 , 求得EF=4,進(jìn)而求得BE=8,CF=8,在RT△AEB中,根據(jù)勾股定理求得AE=6,然后根據(jù)△AEB∽△EFP,得出 ,求得PF= ,即可求得PD的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車(chē)間有技術(shù)工人85人,平均每天每人可加工甲種部件16個(gè)或乙種部件10個(gè),2個(gè)甲種部件和3個(gè)乙種部件配成一套,問(wèn)加工甲、乙兩種部件各安排多少人才能使每天加工的兩種部件剛好配套?并求出加工了多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),ADBE相交于點(diǎn)點(diǎn)F,G分別是線段AO,

BO的中點(diǎn).

求證:四邊形DEFG是平行四邊形;

如圖2,連接CO,若,求證:四邊形DEFG是菱形;

的前提下,當(dāng)滿足什么條件時(shí),四邊形DEFG能成為正方形?直接回答即可,不必證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初中三年級(jí)270名師生計(jì)劃集體外出一日游,乘車(chē)往返,經(jīng)與客運(yùn)公司聯(lián)系,他們有座位數(shù)不同的中巴車(chē)和大客車(chē)兩種車(chē)型可供選擇,每輛大客車(chē)比中巴車(chē)多15個(gè)座位,學(xué)校根據(jù)中巴車(chē)和大客車(chē)的座位數(shù)計(jì)算后得知,如果租用中巴車(chē)若干輛,師生剛好坐滿全部座位;如果租用大客車(chē),不僅少用一輛,而且?guī)熒旰筮多30個(gè)座位.

(1)求中巴車(chē)和大客車(chē)各有多少個(gè)座位?

(2)客運(yùn)公司為學(xué)校這次活動(dòng)提供的報(bào)價(jià)是:租用中巴車(chē)每輛往返費(fèi)用350元,租用大客車(chē)每輛往返費(fèi)用400元,學(xué)校在研究租車(chē)方案時(shí)發(fā)現(xiàn),同時(shí)租用兩種車(chē),其中大客車(chē)比中巴車(chē)多租一輛,所需租車(chē)費(fèi)比單獨(dú)租用一種車(chē)型都要便宜,按這種方案需要中巴車(chē)和大客車(chē)各多少輛?租車(chē)費(fèi)比單獨(dú)租用中巴車(chē)或大客車(chē)各少多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂點(diǎn)A點(diǎn)測(cè)得建筑物CD的頂點(diǎn)C點(diǎn)的俯角∠EAC為30°,測(cè)得建筑物CD的底部D點(diǎn)的俯角∠EAD為45°.

(1)求兩建筑物底部之間水平距離BD的長(zhǎng)度;
(2)求建筑物CD的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點(diǎn),且AD∥CO.
(1)求證:△ADB∽△OBC;
(2)連結(jié)CD,試說(shuō)明CD是⊙O的切線;
(3)若AB=2, ,求AD的長(zhǎng).(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】青運(yùn)會(huì)開(kāi)幕式前,福州市公路檢修組乘汽車(chē)沿公路檢修線路,約定向東為正,向西為負(fù).某天自A地出發(fā), 到收工時(shí),行走記錄為(單位:千米):

+8、-9、+4、+7、-2、-10、-3、-3、+7、+5

回答下列問(wèn)題:

(1)收工時(shí)在A地的哪邊?A地多少千米? 并用數(shù)軸表示收工地點(diǎn);

(2)若每千米耗油0.3,問(wèn)從A地出發(fā)到收工時(shí),共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD為較短的直角邊向△CDB的同側(cè)作Rt△DEC,滿足∠E=30°,∠DCE=90°,再用同樣的方法作Rt△FGC,∠FCG=90°,繼續(xù)用同樣的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),已點(diǎn)A3,0)、B(-5,3),將點(diǎn)A向左平移6個(gè)單位到達(dá)C點(diǎn),將點(diǎn)B向下平移6個(gè)單位到達(dá)D點(diǎn)

1)寫(xiě)出C點(diǎn)、D點(diǎn)的坐標(biāo)C __________,D ____________ ;

2)把這些點(diǎn)按ABCDA順次連接起來(lái),這個(gè)圖形的面積是__________

查看答案和解析>>

同步練習(xí)冊(cè)答案