【題目】
(1)解題探究
已知三角形ABC,探究∠A+∠B+∠C等于多少度?(提示:過(guò)一點(diǎn)作平行線(xiàn))
(2)發(fā)現(xiàn)規(guī)律
如圖①,三角形ABC中,點(diǎn)D在BC的延長(zhǎng)線(xiàn)上,試說(shuō)明∠A+∠B與∠1的關(guān)系?
(3)運(yùn)用規(guī)律
利用以上規(guī)律,快速探究以下各圖:
當(dāng)AB∥CD時(shí),∠A,∠C,∠P的關(guān)系式為(直接填空,不要證明過(guò)程):
∠C = ,∠C = ,∠C =
【答案】(1)180°;(2)∠A+∠B=∠1;(3)∠A+∠P,∠A-∠P,∠P+180°-∠A.
【解析】試題分析:(1)延長(zhǎng)BC到D,過(guò)點(diǎn)C作CE∥BA,根據(jù)兩直線(xiàn)平行,同位角相等可得∠B=∠1,兩直線(xiàn)平行,內(nèi)錯(cuò)角相等可得∠A=∠2,再根據(jù)平角的定義列式整理即可得證;
(2)根據(jù)平行線(xiàn)的性質(zhì)即可得到結(jié)論;
(3)根據(jù)平行線(xiàn)的性質(zhì)和三角形的外角的性質(zhì)即可得到結(jié)論.
試題解析:(1)如圖⑤,延長(zhǎng)BC到D,過(guò)點(diǎn)C作CE∥BA,
∵BA∥CE,
∴∠B=∠1(兩直線(xiàn)平行,同位角相等),
∠A=∠2(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等),
又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定義),
∴∠A+∠B+∠ACB=180°(等量代換);
(2)如圖①過(guò)C作CE∥AB,
∴∠2=∠A,∠3=∠B,
∴∠ACD=∠1+∠2=∠A+∠B,
(3)如圖②,∵AB∥CD,
∴∠1=∠C,
∵∠1=∠A+∠P,
∴∠C=∠A+∠P;
如圖③,延長(zhǎng)BA交PC于E,
∵AB∥CD,
∴∠1=∠C,
∴∠1=∠C=∠BAP﹣∠P;
如圖④,
延長(zhǎng)CD交AP于E,
∵AB∥CD,
∴∠A=∠AEC=∠P+,
∴∠PCD=∠P+180°﹣∠A.
故答案為:∠A+∠P,∠BAP﹣∠P,∠P+180°﹣∠A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一件服裝的標(biāo)價(jià)為300元,打八折銷(xiāo)售后可獲利60元,則該件服裝的成本價(jià)是 元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店需要購(gòu)進(jìn)甲、乙兩種商品共160件,其進(jìn)價(jià)和售價(jià)如下表:(注:獲利=售價(jià)-進(jìn)價(jià))
(1)若商店計(jì)劃銷(xiāo)售完這批商品后能獲利1 100元,請(qǐng)問(wèn)甲、乙兩種商品應(yīng)分別購(gòu)進(jìn)多少件?
(2)若商店計(jì)劃投入資金少于4300元,且銷(xiāo)售完這批商品后獲利多于1260元,請(qǐng)問(wèn)有哪幾種購(gòu)貨方案?并指出獲利最大的購(gòu)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)都為1,將△ABC經(jīng)過(guò)一次平移后得到△A1B1C1,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B1.
(1)請(qǐng)畫(huà)出平移后的△A1B1C1;
(2)利用網(wǎng)格畫(huà)出△ABC 中AC邊上的中線(xiàn)BD,高BE;
(3)△A1B1C1的面積為 ;
(4)若△ABP △ABC面積相等,這樣的格點(diǎn)P有____個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題3分+3分+3分=9分)
如圖,在方格紙內(nèi)將三角形ABC經(jīng)過(guò)平移后得到三角形A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′,解答下列問(wèn)題.
(1)過(guò)C點(diǎn)畫(huà)AB的垂線(xiàn)MN;
(2)在給定方格紙中畫(huà)出平移后的三角形A′B′C′;
(3)寫(xiě)出三角形ABC平移的一種具體方法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系內(nèi)的一條直線(xiàn)同時(shí)滿(mǎn)足下列兩個(gè)條件:①不經(jīng)過(guò)第四象限;②與兩條坐標(biāo)軸所圍成的三角形的面積為2,這條直線(xiàn)的解析式可以是_________(寫(xiě)出一個(gè)解析式即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:直線(xiàn)AB,CD被直線(xiàn)EF,GH所截,且∠1=∠2,∠3=105°,∠4等于多少度?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com