分析 (1)由A、C兩點(diǎn)坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;
(2)由A、B關(guān)于對(duì)稱軸對(duì)稱,則可知PA=PB,則當(dāng)P、B、C三點(diǎn)在一條線上時(shí)滿足|PA-PC|最大,利用待定系數(shù)法可求得直線BC解析式,則可求得P點(diǎn)坐標(biāo);
(3)分AB為邊和AB為對(duì)稱線兩種情況,當(dāng)AB為邊時(shí),利用平行四邊形的性質(zhì)可得到CQ=AB,可得到關(guān)于D點(diǎn)的方程,可求得D點(diǎn)坐標(biāo),當(dāng)AB為對(duì)角線時(shí),則AB的中點(diǎn)也為CQ的中點(diǎn),則可求得Q點(diǎn)坐標(biāo).
解答 解:
(1)∵二次函數(shù)y=-x2+bx+c的圖象交x軸于點(diǎn)A(-4,0)和點(diǎn)B,交y軸于點(diǎn)C(0,4),
∴$\left\{\begin{array}{l}{-16-4b+c=0}\\{c=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{b=-3}\\{c=4}\end{array}\right.$,
∴二次函數(shù)的表達(dá)式為y=-x2-3x+4;
(2)∵y=-x2-3x+4,
∴對(duì)稱軸為x=-$\frac{3}{2}$,
∵A(-4,0),
∴B(1,0),
∵P在對(duì)稱軸上,
∴PA=PB,
∴|PA-PC|=|PB-PC|≤BC,即當(dāng)P、B、C三點(diǎn)在一條線上時(shí)|PA-PC|的值最大,
設(shè)直線BC解析式為y=kx+b,
∴$\left\{\begin{array}{l}{k+b=0}\\{b=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=-4}\\{b=4}\end{array}\right.$,
∴直線BC解析式為y=-4x+4,
令x=-$\frac{3}{2}$可得y=-4×(-$\frac{3}{2}$)+4=10,
∴存在滿足條件的點(diǎn)P,其坐標(biāo)為($-\frac{3}{2},10$);
(3)存在點(diǎn)Q,使A,B,C,Q四點(diǎn)構(gòu)成平行四邊形,
理由:①以AB為邊時(shí),則有CQ∥AB,即點(diǎn)Q的縱坐標(biāo)為4,
∵CQ=AB=5,且C(0,4),
∴Q(-5,4)或(5,4),
②以AB為對(duì)角線時(shí),CQ必過線段AB中點(diǎn),且被AB平分,即:AB的中點(diǎn)也是CQ的中點(diǎn),
∵A、B中點(diǎn)坐標(biāo)為(-$\frac{3}{2}$,0),且C(0,4),
∴Q點(diǎn)橫坐標(biāo)=2×(-$\frac{3}{2}$)-0=-3,Q點(diǎn)縱坐標(biāo)=0-4=-4,
∴Q(-3,-4),
綜合可知存在滿足條件的點(diǎn)D,坐標(biāo)為(-5,4)或(5,4)或(-3,-4).
點(diǎn)評(píng) 本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、軸對(duì)稱的性質(zhì)、平行四邊形的性質(zhì)、方程思想及分類討論思想等知識(shí).在(1)中注意待定系數(shù)法的應(yīng)用步驟,在(2)中確定出點(diǎn)P的位置是解題的關(guān)鍵,在(3)中分AB為邊和AB為對(duì)稱線兩種情況分別求解是解題的關(guān)鍵.本題考查知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度適中.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com