【題目】如圖,△ABC是直角三角形,延長AB到點E,使BE=BC,在BC上取一點F,使BF=AB,連接EF,△ABC旋轉(zhuǎn)后能與△FBE重合,請回答:

(1)旋轉(zhuǎn)中心是點 , 旋轉(zhuǎn)的最小角度是
(2)AC與EF的位置關(guān)系如何,并說明理由.

【答案】
(1)B;90
(2)解:AC⊥EF 理由如下:

延長EF交AC于點D由旋轉(zhuǎn)可知∠C=∠E

∵∠ABC=90°

∴∠C+∠A=90°

∴∠E+∠A=90°

∴∠ADE=90°

∴AC⊥EF.


【解析】解:(1)∵BC=BE,BA=BF,
∴BC和BE,BA和BF為對應(yīng)邊,
∵△ABC旋轉(zhuǎn)后能與△FBE重合,
∴旋轉(zhuǎn)中心為點B;
∵∠ABC=90°,
而△ABC旋轉(zhuǎn)后能與△FBE重合,
∴∠ABF等于旋轉(zhuǎn)角,
∴旋轉(zhuǎn)了90度,
所以答案是:B,90;
【考點精析】認真審題,首先需要了解旋轉(zhuǎn)的性質(zhì)(①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為t(s).

(1)若點Q的運動速度與點P的運動速度相等,當t=1時,△ACP與△BPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關(guān)系;

(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設(shè)點Q的運動速度為x cm/s,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】深圳市政府計劃投資1.4萬億元實施東進戰(zhàn)略.為了解深圳市民對東進戰(zhàn)略的關(guān)注情況.某校數(shù)學興趣小組隨機采訪部分深圳市民,對采訪情況制作了統(tǒng)計圖表的一部分如下:

關(guān)注情況

頻數(shù)

頻率

A.高度關(guān)注

M

0.1

B.一般關(guān)注

100

0.5

C.不關(guān)注

30

N

D.不知道

50

0.25


(1)根據(jù)上述統(tǒng)計圖可得此次采訪的人數(shù)為人,m= , n=
(2)根據(jù)以上信息補全條形統(tǒng)計圖;
(3)根據(jù)上述采訪結(jié)果,請估計在15000名深圳市民中,高度關(guān)注東進戰(zhàn)略的深圳市民約有人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點M為直線AB上一動點, 都是等邊三角形,連接BN

求證: ;

分別寫出點M在如圖2和圖3所示位置時,線段AB、BM、BN三者之間的數(shù)量關(guān)系不需證明;

如圖4,當時,證明:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點A(5,3),點C(0,8),頂點為點M,過點A作AB∥x軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.

(1)求該二次函數(shù)的解析式及點M的坐標;
(2)求△ABC的面積;
(3)若將該二次函數(shù)圖象向下平移m(m>0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等邊三角形ABC中,點EAB上,點DCB的延長線上,且ED=EC,如圖,試確定線段AEDB的大小關(guān)系,并說明理由”.

(1)當點EAB的中點時,如圖1,確定線段AEDB的大小關(guān)系,直接寫出結(jié)論:AE   DB

(填“>”,“<”“=”).

(2)證明你得出的以上(1),如圖2,過點EEFBC,交AC于點F.

(3)在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED = EC.若ABC的邊長為1,AE = 2,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AD是∠BAC的平分線,E、F分別為AB、AC上的點,且∠EDF+EAF=180°,求證DE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).

(1)求拋物線的函數(shù)表達式;
(2)若點P在拋物線上,且SAOP=4SBOC , 求點P的坐標;
(3)如圖b,設(shè)點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,點A,B,C在⊙O上,P為 上一點,連接AP,CP,求∠P的度數(shù).

查看答案和解析>>

同步練習冊答案