20.計算
(1)(-$\frac{1}{2}$xy)3
(2)-5x(2x-3y)
(3)(x+2y)(3y-x)

分析 (1)原式利用積的乘方運(yùn)算法則計算即可得到結(jié)果;
(2)原式利用單項式乘以多項式法則計算即可得到結(jié)果;
(3)原式利用多項式乘以多項式法則計算即可得到結(jié)果.

解答 解:(1)原式=-$\frac{1}{8}$x3y3;
(2)原式=-10x2+15xy;
(3)原式=xy-x2+6y2

點(diǎn)評 此題考查了整式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.學(xué)校要圍一個矩形花圃,其一邊利用足夠長的墻,另三邊用籬笆圍成,由于園藝需要,還要用一段籬笆將花圃分隔為兩個小矩形部分(如圖所示),總共36米的籬笆恰好用完(不考慮損耗).設(shè)矩形垂直于墻面的一邊AB的長為x米(要求AB<AD),矩形花圃ABCD的面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)要想使矩形花圃ABCD的面積為60平方米,AB邊的長應(yīng)為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.(1)75$\frac{7}{19}$+|(-81$\frac{5}{21}$)+67$\frac{7}{19}$|-73$\frac{5}{21}$
(2)-14-$\frac{1}{6}$×[2-(-3)2]
(3)(-3)2-($\frac{3}{2}$)2×$\frac{2}{9}$+6÷|-$\frac{2}{3}$|3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.計算:
(1)a$\sqrt{8a}$-2a2$\sqrt{\frac{1}{8a}}$+3$\sqrt{2{a}^{3}}$              
(2)2cos245°-sin30°•tan245°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

15.如圖,△ABC中,BC的垂直平分線DP與∠BAC的角平分線相交于點(diǎn)D,垂足為點(diǎn)P,若∠BAC=84°,則∠BDC=96°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.(1)解方程(y2-2y+1)(y2+2y-1)=y2(y+2)(y-2);
(2)已知x+y=7,xy=12,求x2+y2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.計算:
(1)(2y+1)2-(y-1)(y+5);
(2)(ab23÷(-ab)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.按要求完成下列題目.
(1)求:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n+1)}$的值.
對于這個問題,可能有的同學(xué)接觸過,一般方法是考慮其中的一般項,注意到上面和式的每一項可以寫成$\frac{1}{n(n+1)}$的形式,而$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,這樣就把$\frac{1}{n(n+1)}$一項(分)裂成了兩項.
試著把上面和式的每一項都裂成兩項,注意觀察其中的規(guī)律,求出上面的和,并直接寫出$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2016×2017}$的值.
(2)若$\frac{1}{n(n+1)(n+2)}$=$\frac{A}{n(n+1)}$+$\frac{B}{(n+1)(n+2)}$
①求:A、B的值:
②求:$\frac{1}{1×2×3}$+$\frac{1}{2×3×4}$+…+$\frac{1}{n(n+1)(n+2)}$的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.單項式-ab2的系數(shù)及次數(shù)分別是(  )
A.0,3B.-1,3C.1,3D.-1,2

查看答案和解析>>

同步練習(xí)冊答案