【題目】如圖,拋物線y=﹣x2+bx+c過點(diǎn)B(3,0),C(0,3),D為拋物線的頂點(diǎn).

(1)求拋物線的解析式以及頂點(diǎn)坐標(biāo);
(2)點(diǎn)C關(guān)于拋物線y=﹣x2+bx+c對稱軸的對稱點(diǎn)為E點(diǎn),聯(lián)結(jié)BC,BE,求∠CBE的正切值;
(3)點(diǎn)M是拋物線對稱軸上一點(diǎn),且△DMB和△BCE相似,求點(diǎn)M坐標(biāo).

【答案】
(1)

解:∵拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)B(3,0)和點(diǎn)C(0,3)

解得 ,

∴拋物線解析式為y=﹣x2+2x+3,

y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴拋物線頂點(diǎn)D的坐標(biāo)為(1,4)


(2)

解:由(1)可知拋物線對稱軸為直線x=1,

∵點(diǎn)E與點(diǎn)C(0,3)關(guān)于直線x=1對稱,

∴點(diǎn)E(2,3),

過點(diǎn)E作EH⊥BC于點(diǎn)H,

∵OC=OB=3,

∴BC=

,CE=2,

,

解得EH=

∵∠ECH=∠CBO=45°,

∴CH=EH= ,

∴BH=2

∴在Rt△BEH中,


(3)

解:當(dāng)點(diǎn)M在點(diǎn)D的下方時(shí)

設(shè)M(1,m),對稱軸交x軸于點(diǎn)P,則P(1,0),

∴BP=2,DP=4,

,

,∠CBE、∠BDP均為銳角,

∴∠CBE=∠BDP,

∵△DMB與△BEC相似,

,

∵DM=4﹣m, , ,

解得, ,

∴點(diǎn)M(1,

,則 ,

解得m=﹣2,

∴點(diǎn)M(1,﹣2),

當(dāng)點(diǎn)M在點(diǎn)D的上方時(shí),根據(jù)題意知點(diǎn)M不存在.

綜上所述,點(diǎn)M的坐標(biāo)為(1, )或(1,﹣2).


【解析】(1)利用待定系數(shù)法求出二次函數(shù)的解析式,根據(jù)二次函數(shù)的性質(zhì)解答即可;(2)過點(diǎn)E作EH⊥BC于點(diǎn)H,根據(jù)軸對稱的性質(zhì)求出點(diǎn)E的坐標(biāo),根據(jù)三角形的面積公式求出EH、BH,根據(jù)正切的定義計(jì)算即可;(3)分 兩種情況,計(jì)算即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的概念的相關(guān)知識,掌握一般地,自變量x和因變量y之間存在如下關(guān)系:一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù),以及對二次函數(shù)的圖象的理解,了解二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,E為BC邊中點(diǎn),連接AE,以AD為直徑的⊙O交AE于點(diǎn)F,連接CF.

(1)求證:CF與⊙O相切;
(2)若AD=2,F(xiàn)為AE的中點(diǎn),求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1:ρ2﹣4ρcosθ+3=0,θ∈[0,2π],曲線C2:ρ= ,θ∈[0,2π]. (Ⅰ)求曲線C1的一個(gè)參數(shù)方程;
(Ⅱ)若曲線C1和曲線C2相交于A、B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條拋物線y=﹣x(x﹣2)(0≤x≤2)的一部分,記為C1 , 它與x軸交于O,A1兩點(diǎn),將C1繞點(diǎn)A1旋轉(zhuǎn)180°得到C2 , 交x軸于點(diǎn)A2 , ;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得到C3 , 交x軸于A3;…如此進(jìn)行下去,直至得到C6 , 若點(diǎn)P(2017,y)在拋物線Cn上,則y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,cosA= ,BE,CF分別是AC,AB邊上的高,聯(lián)結(jié)EF,那么△AEF和△ABC的周長比為(
A.1:2
B.1:3
C.1:4
D.1:9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使點(diǎn)C落在邊AB上的點(diǎn)E處,點(diǎn)B落在點(diǎn)D處,連接BD,如果∠DAC=∠DBA,那么 的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DE∥BC,且過△ABC的重心,分別與AB,AC交于點(diǎn)D,E,點(diǎn)P是線段DE上一點(diǎn),CP的延長線交AB于點(diǎn)Q,如果 = ,那么SDPQ:SCPE的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,第一象限內(nèi)的點(diǎn)A,B在反比例函數(shù)的圖象上,點(diǎn)C在y軸上,BC∥x軸,點(diǎn)A的坐標(biāo)為(2,4),且cot∠ACB=
求:
(1)反比例函數(shù)的解析式;
(2)點(diǎn)C的坐標(biāo);
(3)∠ABC的余弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E是BC的中點(diǎn),連接AE并延長交DC的延長線于點(diǎn)F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.

查看答案和解析>>

同步練習(xí)冊答案