【題目】AB、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B、C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.

(1)求兩次傳球后,球恰在B手中的概率; (用樹(shù)形圖或列表表示所有可能的結(jié)果)

(2)求三次傳球后,球恰在A手中的概率. (用樹(shù)形圖或列表表示所有可能的結(jié)果)

【答案】1,見(jiàn)解析;(2,見(jiàn)解析

【解析】

1)首先根據(jù)題意畫(huà)出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果與兩次傳球后,球恰在B手中的情況,再利用概率公式即可求得答案;

2)首先根據(jù)題意畫(huà)出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果與三次傳球后,球恰在A手中的情況,再利用概率公式即可求得答案.

1)畫(huà)樹(shù)狀圖得:

共有4種等可能的結(jié)果.(ABA、ABCACA、ACB),兩次傳球后,球恰在B手中的只有1種情況.

兩次傳球后,球恰在B手中的概率為

2)畫(huà)樹(shù)狀圖得:

共有8種等可能的結(jié)果.(ABABABAC、ABCAABCB、ACABACAC、ACBA、ACBC).三次傳球后,球恰在A手中的有2種情況.

三次傳球后,球恰在A手中的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水產(chǎn)基地種植某種食用海藻,從三月一日起的30周內(nèi),它的市場(chǎng)價(jià)格與上市時(shí)間的關(guān)系用圖①線(xiàn)段表示;它的平均畝產(chǎn)量與時(shí)間的關(guān)系用圖②線(xiàn)段表示;它的每畝平均成本與上市時(shí)間的關(guān)系用圖③拋物線(xiàn)表示.

1)寫(xiě)出圖①、圖②所表示的函數(shù)關(guān)系式;

2)若市場(chǎng)價(jià)×畝產(chǎn)量-畝平均成本 = 每畝總利潤(rùn),問(wèn)哪一周上市的海藻利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,ECD的中點(diǎn),FBE上的一點(diǎn),連接CF并延長(zhǎng)交AB于點(diǎn)M,MNCM交射線(xiàn)AD于點(diǎn)N

1)如圖1,當(dāng)點(diǎn)FBE中點(diǎn)時(shí),求證:AMCE;

2)如圖2,若3時(shí),求的值;

3)若nn≥3)時(shí),請(qǐng)直接寫(xiě)出的值.(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形中,,點(diǎn)是對(duì)角線(xiàn)上一動(dòng)點(diǎn),將線(xiàn)段繞點(diǎn)順時(shí)針旋轉(zhuǎn),連接,連接并延長(zhǎng),分別交于點(diǎn)、

1)如圖1,若,求菱形的面積;

2)如圖2,求證:

    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠BAC90°,ADBCD,BG平分∠ABCADE,交ACG,GFBCF,連接EF

1)如圖1,求證:四邊形AEFG是菱形;

2)如圖2,若EBG的中點(diǎn),過(guò)點(diǎn)EEMBCACM,在不添加任何輔助線(xiàn)的情況下,請(qǐng)直接寫(xiě)出圖2中是CM長(zhǎng)倍的所有線(xiàn)段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】試比較圖中兩個(gè)幾何圖形的異同,請(qǐng)分別寫(xiě)出它們的兩個(gè)相同點(diǎn)和兩個(gè)不同點(diǎn)。例如,相同點(diǎn):正方形的對(duì)角線(xiàn)相等,正五邊形的。對(duì)角線(xiàn)也相等;不同點(diǎn):正方形是中心對(duì)稱(chēng)圖形,正五邊形不是中心對(duì)稱(chēng)圖形。

相同點(diǎn):①_________________;②___________________

不同點(diǎn):①______________________;②____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某大樓的頂部樹(shù)有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1,AB=10,AE=15.(i=1是指坡面的鉛直高度BH與水平寬度AH的比)

1)求點(diǎn)B距水平面AE的高度BH;

2)求廣告牌CD的高度.

(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1.參考數(shù)據(jù):1.414,1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線(xiàn)y1ax2bxc(a≠0)圖象的一部分,拋物線(xiàn)的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)交點(diǎn)B(4,0),直線(xiàn)y2mxn(m≠0)與拋物線(xiàn)交于A,B兩點(diǎn),下列結(jié)論:①2ab0;②abc>0;③方程ax2bxc3有兩個(gè)相等的實(shí)數(shù)根;拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)是(1,0)當(dāng)1<x<4時(shí),有y2<y1,其中正確的是(

A.①④⑤B.①③④⑤C.①③⑤D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)開(kāi)展以“我最喜歡的職業(yè)”為主題的調(diào)查活動(dòng),通過(guò)對(duì)學(xué)生的隨機(jī)抽樣調(diào)查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制成的不完整統(tǒng)計(jì)圖.

1)把折線(xiàn)統(tǒng)計(jì)圖補(bǔ)充完整;

2)求出扇形統(tǒng)計(jì)圖中,公務(wù)員部分對(duì)應(yīng)的圓心角的度數(shù);

3)若從被調(diào)查的學(xué)生中任意抽取一名,求取出的這名學(xué)生最喜歡的職業(yè)是“教師”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案