【題目】如圖,在下列6×6的網(wǎng)格中,橫、縱坐標(biāo)均A(0,3),B(5,3)、C(1,5)都是格點(diǎn)在網(wǎng)格中僅用無(wú)刻度的直尺作圖,保留作圖痕跡.
(1)畫(huà)出以AB為斜邊的等腰Rt△ABD(D在AB下方);
(2)連接CD交AB于點(diǎn)E,則∠ACE的度數(shù)為 ;
(3)在直線AB下方找一個(gè)格點(diǎn)F,連接CF,使∠ACF=∠AEC,直接寫(xiě)出F點(diǎn)坐標(biāo) ;
(4)由上述作圖直接寫(xiě)出tan∠AEC的值 .
【答案】(1)見(jiàn)解析;(2)∠ACE=45°;(3)(6,0);(4)3
【解析】
(1)取格點(diǎn)M,N,連接AM,BN交于點(diǎn)D,點(diǎn)D即為所求.
(2)利用四點(diǎn)共圓的性質(zhì)解決問(wèn)題即可.
(3)取格點(diǎn)G,作直線CG可得點(diǎn)F.
(4)在Rt△ACF中,求出AF,AC即可解決問(wèn)題.
(1)△ABD即為所求.
(2)∠ACE=45°.
理由:∵∠ACB+∠ADB=180°,
∴A,C,B,D四點(diǎn)共圓,
∵DA=DB,
∴,
∴∠ACD=∠BCD=45°.
故答案為45°.
(3)點(diǎn)F即為所求.F(6,0).
理由:△ACE,∠ACG中,
∵∠CAE=∠CAG,∠ACE=∠AGC=45°,
∴∠AEC=∠ACG,
即∠ACF=∠AEC.
故答案為(6,0).
(4)在Rt∠ACF中,tan∠ACF===3,
∵∠ACF=∠AEC,
∴tan∠AEC=3.
故答案為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,C,B三地依次在一條筆直的道路上甲、乙兩車(chē)同時(shí)分別從A,B兩地出發(fā),相向而行.甲車(chē)從A地行駛到B地就停止,乙車(chē)從B地行駛到A地后,立即以相同的速度返回B地,在整個(gè)行駛的過(guò)程中,甲、乙兩車(chē)均保持勻速行駛,甲、乙兩車(chē)距C地的距離之和y(km)與甲車(chē)出發(fā)的間(b)之間的函數(shù)關(guān)系如圖所示,則甲車(chē)到達(dá)B地時(shí),乙車(chē)距B地的距離為_____km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、B、C三地順次在同一直線上,A、C兩地相距1400千米,甲乙兩車(chē)均從A地出發(fā),向B地方向勻速前進(jìn),甲車(chē)出發(fā)5小時(shí)后,乙車(chē)出發(fā),經(jīng)過(guò)一段時(shí)間后兩車(chē)在B地相遇,甲車(chē)到達(dá)B地后便在B地卸貨,卸完貨后從B地按原車(chē)速的返回A地,而乙車(chē)到B地后立刻繼續(xù)以原速前往C地,到達(dá)C地后按原車(chē)速的原路返回A地,結(jié)果甲乙兩車(chē)同時(shí)返回A地,若兩車(chē)間的距離y(千米)與甲車(chē)出發(fā)時(shí)間x(小時(shí))之間的關(guān)系如圖所示,則甲車(chē)在B地卸貨用了_____小時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:四邊形 ABCD 內(nèi)接于⊙O,連接 AC、BD,∠BAD+2∠ACB=180°.
(1)如圖 1,求證:點(diǎn) A 為弧 BD 的中點(diǎn);
(2)如圖 2,點(diǎn) E 為弦 BD 上一點(diǎn),延長(zhǎng) BA 至點(diǎn) F,使得 AF=AB,連接 FE 交 AD 于點(diǎn) P,過(guò)點(diǎn) P 作 PH⊥AF 于點(diǎn) H,AF=2AH+AP,求證:AH:AB=PE:BE;
(3)在(2)的條件下,如圖 3,連接 AE,并延長(zhǎng) AE 交⊙O 于點(diǎn) M,連接 CM,并延長(zhǎng) CM 交 AD 的延長(zhǎng)線于點(diǎn) N,連接 FD,∠MND=∠MED,DF=12﹒sin∠ACB,MN=,求 AH 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與雙曲線的一個(gè)交點(diǎn)是.
(1)求和的值;
(2)設(shè)點(diǎn)是雙曲線上一點(diǎn),直線與軸交于點(diǎn).若,結(jié)合圖象,直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作,交射線OB于點(diǎn)D,連接CD;
(2)分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,交于點(diǎn)M,N;
(3)連接OM,MN.
根據(jù)以上作圖過(guò)程及所作圖形,下列結(jié)論中錯(cuò)誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,以為直徑作半圓,半徑繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,點(diǎn)的對(duì)應(yīng)點(diǎn)為,當(dāng)點(diǎn)與點(diǎn)重合時(shí)停止.連接并延長(zhǎng)到點(diǎn),使得,過(guò)點(diǎn)作于點(diǎn),連接,.
(1)______;
(2)如圖,當(dāng)點(diǎn)與點(diǎn)重合時(shí),判斷的形狀,并說(shuō)明理由;
(3)如圖,當(dāng)時(shí),求的長(zhǎng);
(4)如圖,若點(diǎn)是線段上一點(diǎn),連接,當(dāng)與半圓相切時(shí),直接寫(xiě)出直線與的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=6,E是BC的中點(diǎn),連接AE,P是邊AD上一動(dòng)點(diǎn),沿過(guò)點(diǎn)P的直線將矩形折疊,使點(diǎn)D落在AE上的點(diǎn)D′處,當(dāng)△APD′是直角三角形時(shí),PD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,關(guān)于x的二次函數(shù)y=ax2﹣2ax(a>0)的頂點(diǎn)為C,與x軸交于點(diǎn)O、A,關(guān)于x的一次函數(shù)y=﹣ax(a>0).
(1)試說(shuō)明點(diǎn)C在一次函數(shù)的圖象上;
(2)若兩個(gè)點(diǎn)(k,y1)、(k+2,y2)(k≠0,±2)都在二次函數(shù)的圖象上,是否存在整數(shù)k,滿(mǎn)足?如果存在,請(qǐng)求出k的值;如果不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)E是二次函數(shù)圖象上一動(dòng)點(diǎn),E點(diǎn)的橫坐標(biāo)是n,且﹣1≤n≤1,過(guò)點(diǎn)E作y軸的平行線,與一次函數(shù)圖象交于點(diǎn)F,當(dāng)0<a≤2時(shí),求線段EF的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com