精英家教網 > 初中數學 > 題目詳情

【題目】如圖,四邊形ABCD向右平移一段距離后得到四邊形.

1)找出圖中存在的平行且相等的四條線段(即四條線段全部互相平行且相等);

2)找出圖中存在的四組相等的角;

3)四邊形ABCD與四邊形的形狀、大小相同嗎?為什么?

【答案】1AA′、BB′、CC′、DD′;(2,∠ABC=ABC,;(3)四邊形ABCD與四邊形的形狀、大小相同.理由見解析.

【解析】

1)根據平移前后的對應邊平行且相等即可得答案;

2)根據平移前后的對應角相等即可得答案;

3)根據平移的性質解答即可.

1)∵四邊形ABCD向右平移一段距離后得到四邊形.

∴圖中全部互相平行且相等的四條線段是AA′、BB′CC′、DD′.

2)∵四邊形ABCD向右平移一段距離后得到四邊形.

,∠ABC=A′B′C′,,.

3)∵平移不改變圖形的形狀和大小,

∴四邊形ABCD與四邊形的形狀、大小相同.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知A=xyx1,B=4x3y,

1)當x=2, y=0.6時,求A+2B的值;

2)若代數式2AB的結果與字母y的取值無關,求x的值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:

1

2

3

4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點EF在直線l的同一側,要在直線l上找一點K,使KEKF的距離之和最小,我們可以作出點E關于l的對稱點E′,連接FE′交直線L于點K,則點K即為所求.

(1)(實踐運用)拋物線y=ax2+bx+c經過點A(﹣1,0)、B(3,0)、C(0,﹣3).如圖2.

①求該拋物線的解析式;

②在拋物線的對稱軸上找一點P,使PA+PC的值最小,并求出此時點P的坐標及PA+PC的最小值.

(2)(知識拓展)在對稱軸上找一點Q,使|QA﹣QC|的值最大,并求出此時點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形中,點是正方形內兩點,,,為探索這個圖形的特殊性質,某數學興趣小組經歷了如下過程:

1)在圖1中,連接,且

①求證:互相平分;

②求證:;

2)在圖2中,當,其它條件不變時,是否成立?若成立,請證明:若不成立,請說明理由.

3)在圖3中,當時,求之長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,RtABC的三個頂點分別是A(-4,2)、B(0,4)、C(0,2),

(1)畫出ABC關于點C成中心對稱的A1B1C;平移ABC,若點A的對應點A2的坐標為(0,-4),畫出平移后對應的A2B2C2;

(2)A1B1C和A2B2C2關于某一點成中心對稱,則對稱中心的坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】骰子是一種特別的數字立方體(見下圖),它符合規(guī)則:相對兩面的點數之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】國慶期間,王老師計劃組織朋友去晉西北游覽兩日.經了解,現有甲、乙兩家旅行社針對組團兩日游的游客報價均為每人500元,且提供的服務完全相同.甲旅行社表示,每人都按八五折收費;乙旅行社表示,若人數不超過20人,每人都按九折收費,超過20人,則超出部分每人按八折收費.假設組團參加甲、乙兩家旅行社兩日游的人數均為.

1)請列式表示甲、乙兩家旅行社收取組團兩日游的總費用;

2)若王老師組團參加兩日游的人數共有30人,請你通過計算,在甲、乙兩家旅行社中,幫助王老師選擇收取總費用較少的一家.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】數學課上,某班同學用天平和一些物品(如圖)探究了等式的基本性質.該班科技創(chuàng)新小組的同學提出問題:僅用一架天平和一個10克的砝碼能否測量出乒乓球和一次性紙杯的質量?科技創(chuàng)新小組的同學找來足夠多的乒乓球和某種一次性紙杯(假設每個乒乓球的質量相同,每個紙杯的質量也相同),經過多次試驗得到以下記錄:

記錄

天平左邊

天平右邊

狀態(tài)

記錄一

6個乒乓球,

110克的砝碼

14個一次性紙杯

平衡

記錄二

8個乒乓球

7個一次性紙杯,

110克的砝碼

平衡

請算一算,一個乒乓球的質量是多少克?一個這種一次性紙杯的質量是多少克?

解:(1)設一個乒乓球的質量是克,則一個這種一次性紙杯的質量是______克;(用含的代數式表示)

2)列一元一次方程求一個乒乓球的質量,并求出一個這種一次性紙杯的質量.

查看答案和解析>>

同步練習冊答案