【題目】莫小貝在圖1中畫出△ABC其頂點A,B,C都是格點,同時構(gòu)造正方形BDEF,使它的頂點都在格點上,且它的邊DE,EF分別經(jīng)過點C,A,她借助此圖求出了△ABC 的面積.

(1)莫小貝所畫的△ABC 的三邊長分別是AB=_______,BC=______,AC=______;△ABC 的面積為________.

(2)已知△ABC ,AB=,BC=,AC=,請你根據(jù)莫小貝的思路在圖2中畫出△ABC并直接寫出△ABC的面積_________.

【答案】(1) 5,,,6.5;(2)畫圖見解析,5.

【解析】

(1)根據(jù)勾股定理,由格點圖形求出線段的長,然后用矩形的面積減去三個三角形的面積求出△ABC的面積;

(2)利用三邊的值構(gòu)成直角三角形邊的平方和,然后在格點圖形中畫圖即可.

(1)AB==5

AC=

BC=

△ABC的面積:4×4-×3×4-×1×3-×1×4=6.5

(2)AC2=52+52

AB2=12+32

BC=22+42

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】6張小長方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長方形ABCD內(nèi),未被覆蓋的部分恰好分割為兩個長方形,面積分別為S1S2.已知小長方形紙片的長為a,寬為b,且a>b.當AB長度不變而BC變長時,將6張小長方形紙片還按照同樣的方式放在新的長方形ABCD內(nèi),S1S2的差總保持不變,則a,b滿足的關系是

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在甲處工作的有272人,在乙處工作的有196人,如果要使得乙處工作的人數(shù)是甲處工作人數(shù)的,應從乙處調(diào)多少人到甲處?若設應從乙處調(diào)x人到甲處,則下列方程中正確的是( )

A. 272+x=196x B. 272x=196x

C. 272+x=196+x D. 272+x=196x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖△ABC,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧分別交AB,AC于點MN,再分別以點M,N為圓心大于MN的長為半徑畫弧兩弧交于點P,連接AP并延長交BC于點D,則下列說法:①AD∠BAC的平分線;②∠ADC=60°;③DAB的垂直平分線上;④SDAC:SABC=1:3.其中正確的是__________________.(填所有正確說法的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】操作探究:已知在紙面上有一數(shù)軸(如圖所示).

操作一

(1)折疊紙面,使1表示的點與-1表示的點重合,則-3表示的點與________表示的點重合;

操作二:

(2)折疊紙面,使-1表示的點與3表示的點重合,回答以下問題:

5表示的點與數(shù)________表示的點重合;

②若數(shù)軸上AB兩點之間距離為11(AB的左側(cè)),且A、B兩點經(jīng)折疊后重合,求AB兩點表示的數(shù)是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算
(1)計算:( 2+| ﹣2|+3tan30°
(2)先化簡,再求值: ÷ ,其中x=﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.
(1)求證:△ACE≌△BCD;
(2)求證:2CD2=AD2+DB2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,P是CD邊上一點,且AP和BP分別平分∠DAB和∠CBA,若AD=5,AP=8,則△APB的周長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點D作對角線BD的垂線交BA的延長線于點E.
(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=8,BD=6,求△ADE的周長.

查看答案和解析>>

同步練習冊答案