分析 首先根據(jù)題意畫出圖形,由四邊形ABCD是菱形,對(duì)角線AC=6,BD=8,則可求得OA,OB的長(zhǎng),然后由勾股定理即可求得邊AB的長(zhǎng),繼而求得答案.
解答 解:∵四邊形ABCD是菱形,
∴AB=BC=CD=AD,
OA=$\frac{1}{2}$AC=$\frac{1}{2}$×6=3,
OB=$\frac{1}{2}$BD=$\frac{1}{2}$×8=4,AC⊥BD,
在Rt△OAB中,AB=$\sqrt{O{A}^{2}+O{B}^{2}}$=5,
∴菱形ABCD的周長(zhǎng)為:5×4=20.
故答案為:20.
點(diǎn)評(píng) 此題考查了菱形的性質(zhì),解答本題的關(guān)鍵是掌握菱形的對(duì)角線互相垂直且平分,屬于基礎(chǔ)題,難度一般.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\sqrt{2}$-$\sqrt{2}$=3 | B. | a6÷a3=a2 | C. | a2+a3=a5 | D. | (3a3)2=9a6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=-3}\\{y=-1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=-3}\\{y=1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com