【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如32=(12,善于思考的小明進(jìn)行了以下探索:設(shè)ab=(mn2(其中a,b,m,n均為正整數(shù)),則有abm22n22mn,∴am22n2,b2mn

這樣小明就找到了一種把ab的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:

1)當(dāng)a,bm,n均為正整數(shù)時(shí),若ab=(mn2,用含m,n的式子分別表示ab,得a ,b ;

2)利用所探索的結(jié)論,找一組正整數(shù)a,b,mn填空:42 =(1 2;(答案不唯一)

3)若a4=(mn2,且am,n均為正整數(shù),求a的值.

【答案】1m23n2,2mn;(2,(答案不唯一);(3713

【解析】

1)利用完全平方公式展開(kāi)得到(m+n2=m2+3n2+2mn,從而可用m、n表示a、b;
2)取m=2,n=1,則計(jì)算對(duì)應(yīng)的a、b的值,然后填空即可;
3)利用a=m2+3n22mn=4a、m、n均為正整數(shù)可先確定mn的值,然后計(jì)算對(duì)應(yīng)的a的值.

解:(1)(m+n2=m2+3n2+2mn,∴a=m2+3n2,b=2mn

故答案為:m23n2,2mn
2)取m=2,n=1,則a=7,b=4,∴7+4=2+2

故答案為:,(答案不唯一);
3a=m2+3n22mn=4,
am、n均為正整數(shù),
m=2,n=1m=1,n=2,
當(dāng)m=2,n=1時(shí),a=4+3=7
當(dāng)m=1,n=2時(shí),a=1+3×4=13,
a的值為713

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作發(fā)現(xiàn):

如圖1,△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)(旋轉(zhuǎn)角大于0°且小于30°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D,在三角板斜邊上取一點(diǎn)F,使CF=CD,線(xiàn)段AB上取點(diǎn)E,使∠DCE=30°,連接AF,EF.

(1)填空:①∠EAF的度數(shù)是 °;② EDFE的數(shù)量關(guān)系是 .

類(lèi)比探究:

(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)(旋轉(zhuǎn)角大于0°小于45°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D,在三角板另一直角邊上取一點(diǎn)F,使CF=CD,線(xiàn)段AB上取點(diǎn)E,使∠DCE=45°,連接AF,EF.

①求∠EAF的度數(shù).

②請(qǐng)寫(xiě)出線(xiàn)段AE,ED,DB之間的關(guān)系,并證明所寫(xiě)結(jié)論的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】盒子里裝有12張紅色卡片,16張黃色卡片,4張黑色卡片和若干張藍(lán)色卡片,每張卡片除顏色外都相同,從中任意摸出一張卡片,摸到紅色卡片的概率是0.24.

(1)從中任意摸出一張卡片,摸到黑色卡片的概率是多少?

(2)求盒子里藍(lán)色卡片的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AC3,BC4.分別以AB,ACBC為邊在AB的同側(cè)作正方形ABEF,ACPQBCMN,四塊陰影部分的面積分別為S1,S2,S3,S4,則S1S2S3S4等于____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,∠ABC60°,點(diǎn)E,F分別在CDBC的延長(zhǎng)線(xiàn)上,AEBD,EFBCCF

1)求證:四邊形ABDE是平行四邊形;

2)求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方形ABCD的邊長(zhǎng)為6,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線(xiàn)AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用表示直角三角形的兩直角邊(),下列四個(gè)說(shuō)法:

,,,.

其中說(shuō)法正確的是 …………………………………………………………( )

A. ①② B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC 中,AB=AC,∠BAC=90°,D BC 上一點(diǎn),EC⊥BC,EC=BD,DF=FE.

求證:(1)△ABD≌△ACE;

(2)AFDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,OA=6,OC=4,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過(guò)點(diǎn)F的反比例函數(shù) 的圖象與BC邊交于點(diǎn)E.

(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;
(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案