【題目】如圖,已知兩條直線DMCN,線段AB的兩個(gè)端點(diǎn)A、B分別在直線OM、CN上,∠C=∠BAD,點(diǎn)E在線段BC上,且DB平分∠ADE

1)求證:ABCD;

2)若沿著NC方向平移線段AB,那么∠CBD與∠CED度數(shù)之間的關(guān)系是否隨著AB位置的變化而變化?若變化,請找出變化規(guī)律;若不變化,請確定它們之間的數(shù)量關(guān)系.

【答案】1)見解析;(2)沒有變化,∠CDBCED,見解析

【解析】

1)欲證明ABCD,只要證明∠C=∠NBA即可.

2)沒有變化.利用平行線的性質(zhì)以及角平分線的定義證明∠CDBCED即可.

解:(1)∵DMCN,

∴∠BAD=∠NBA

∵∠C=∠BAD,

∴∠C=∠NBA,

ABCD

2)結(jié)論:沒有變化,∠CDBCED

理由:∵DB平分∠ADE

∴∠ADB=∠EDB,

DMCN

∴∠ADB=∠CBD,

∴∠CBD=∠EDB

DMCN,

∴∠CED=∠EDA

∵∠EDA2EDB,

∴∠CDBCED

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一張三角形紙片如圖甲,其中將紙片沿過點(diǎn)B的直線折疊,使點(diǎn)C落到AB邊上的E點(diǎn)處,折痕為如圖乙再將紙片沿過點(diǎn)E的直線折疊,點(diǎn)A恰好與點(diǎn)D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a是最大的負(fù)整數(shù),bc滿足,且a,bc分別是點(diǎn)A,B,C在數(shù)軸上對應(yīng)的數(shù).

(1)a,b,c的值,并在數(shù)軸上標(biāo)出點(diǎn)A,B,C;

(2)若動(dòng)點(diǎn)PC出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒2個(gè)單位長度,運(yùn)動(dòng)幾秒后,點(diǎn)P到達(dá)B點(diǎn)?

(3)在數(shù)軸上找一點(diǎn)M,使點(diǎn)MAB,C三點(diǎn)的距離之和等于13,請直接寫出所有點(diǎn)M對應(yīng)的數(shù).(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在ABC中,BA=BCBDABC的中線,ABC的角平分線AEBD于點(diǎn)F,過點(diǎn)CAB的平行線交AE的延長線于點(diǎn)G

1)如圖1,若∠ABC=60°,求證:AF=EG;

2)如圖2,若∠ABC=90°,求證:AF=EG;

3)在(2)的條件下如圖3,過點(diǎn)A作∠CAH=FAC,過點(diǎn)BBMACAG于點(diǎn)M,點(diǎn)NAH上,連接MN、BN,若∠BMN+EAH=90°,,求BN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春季是傳染病多發(fā)的季節(jié),積極預(yù)防傳染病是學(xué)校高度重視的一項(xiàng)工作,為此,某校對學(xué)生宿舍采取噴灑藥物進(jìn)行消毒.在對某宿舍進(jìn)行消毒的過程中,先經(jīng)過的集中藥物噴灑,再封閉宿舍,然后打開門窗進(jìn)行通風(fēng),室內(nèi)每立方米空氣中含藥量與藥物在空氣中的持續(xù)時(shí)間之間的函數(shù)關(guān)系,在打開門窗通風(fēng)前分別滿足兩個(gè)一次函數(shù),在通風(fēng)后又成反比例,如圖所示.下面四個(gè)選項(xiàng)中錯(cuò)誤的是(

A. 經(jīng)過集中噴灑藥物,室內(nèi)空氣中的含藥量最高達(dá)到

B. 室內(nèi)空氣中的含藥量不低于的持續(xù)時(shí)間達(dá)到了

C. 當(dāng)室內(nèi)空氣中的含藥量不低于且持續(xù)時(shí)間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效

D. 當(dāng)室內(nèi)空氣中的含藥量低于時(shí),對人體才是安全的,所以從室內(nèi)空氣中的含藥量達(dá)到開始,需經(jīng)過后,學(xué)生才能進(jìn)入室內(nèi)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)M為直線AB上一動(dòng)點(diǎn), 都是等邊三角形,連接BN

求證: ;

分別寫出點(diǎn)M在如圖2和圖3所示位置時(shí),線段AB、BMBN三者之間的數(shù)量關(guān)系不需證明;

如圖4,當(dāng)時(shí),證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABCC=90°,點(diǎn)DBC邊的中點(diǎn)BD=2,tanB=

1)求ADAB的長

2)求sin∠BAD的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的角平分線BP、CP相交于點(diǎn)P,∠A=100°,則∠P=____

查看答案和解析>>

同步練習(xí)冊答案