【題目】如圖,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分別為E,F(xiàn),連接EF,則△AEF的面積是( )
A.4 B.3 C.2 D.
【答案】B
【解析】
試題分析:首先利用菱形的性質(zhì)及等邊三角形的判定可得判斷出△AEF是等邊三角形,再根據(jù)三角函數(shù)計算出AE=EF的值,再過A作AM⊥EF,再進一步利用三角函數(shù)計算出AM的值,即可算出三角形的面積.
∵四邊形ABCD是菱形, ∴BC=CD,∠B=∠D=60°, ∵AE⊥BC,AF⊥CD,
∴BC×AE=CD×AF,∠BAE=∠DAF=30°, ∴AE=AF, ∵∠B=60°, ∴∠BAD=120°,
∴∠EAF=120°﹣30°﹣30°=60°, ∴△AEF是等邊三角形, ∴AE=EF,∠AEF=60°,
∵AB=4, ∴BE=2, ∴AE==2, ∴EF=AE=2, 過A作AM⊥EF,
∴AM=AEsin60°=3, ∴△AEF的面積是: EFAM=×2×3=3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,∠A=120°,AB=AC,點P、Q同時從點B出發(fā),以相同的速度分別沿折線B→A→C、射線BC運動,連接PQ.當點P到達點C時,點P、Q同時停止運動.設BQ=x,△BPQ與△ABC重疊部分的面積為S.如圖2是S關于x的函數(shù)圖象(其中0≤x≤8,8<x≤m,m<x≤16時,函數(shù)的解析式不同).
(1)填空:m的值為 ;
(2)求S關于x的函數(shù)關系式,并寫出x的取值范圍;
(3)請直接寫出△PCQ為等腰三角形時x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】舉世矚目的港珠澳大橋于2018年10月24日正式開通營運,它是迄今為止世界上最長的跨海大橋,全長約55000米.55000這個數(shù)用科學記數(shù)法可表示為( )
A. 5.5×103B. 55×103C. 0.55×105D. 5.5×104
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC⊥BD,且AC=8,BD=4,各邊中點分別為A1、B1、C1、D1,順次連接得到四邊形A1B1C1D1,再取各邊中點A2、B2、C2、D2,順次連接得到四邊形A2B2C2D2,…,依此類推,這樣得到四邊形AnBnCnDn,則四邊形AnBnCnDn的面積為( )
A. B. C. D. 不確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有A、B兩種商品,買2件A商品和1件B商品用了90元,買3件A商品和2件B商品用了160元.
(1)求A,B兩種商品每件各是多少元?
(2)如果小紅準備購買A,B兩種商品共10件,總費用不超過350元,問小紅最多可以買多少件B商品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4cm,∠ADC=120°,點E、F同時由A、C兩點出發(fā),分別沿AB、CB方向向點B勻速移動(到點B為止),點E的速度為1cm/s,點F的速度為2cm/s,經(jīng)過t秒△DEF為等邊三角形,則t的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當D在AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com