【題目】利用完全平方公式因式分解在數(shù)學(xué)中的應(yīng)用,請回答下列問題:
(1)因式分解:_______.
(2)填空:
①當(dāng)時,代數(shù)式_______.
②當(dāng)_______時,代數(shù)式;
③代數(shù)式的最小值是_______.
(3)拓展與應(yīng)用:當(dāng)、為何值時,代數(shù)式有最小值,并求出這個最小值.
【答案】(1)(x-2)2;(2)①0;②3;③-26;(3)a=2,b=4,最小值為10.
【解析】
(1)根據(jù)差的完全平方公式進行分解便可;
(2)①先分解因式,再代值計算;
②先對等式左邊的代數(shù)式進行因式分解,再求未知數(shù)的值;
③通過因式分解把原式化成一個完全平方式與一個常數(shù)和的形式,便可求得最小值;
(3)利用完成完全平方式分解因式,把已知代數(shù)式轉(zhuǎn)化為兩個代數(shù)式的平方和與一個常數(shù)的和的形式,便可求得最小值.
(1)
=x2-2×2x+22
=(x-2)2,
故答案為:(x-2)2;
(2)①
=x2+2×2x+22
=(x+2)2
把x=-2代入上式得,
原式=(-2+2)2=0;
②=(x-3)2=0,
x-3=0,
x=3,
∴當(dāng)x=3時,代數(shù)式x2-6x+9=0;
③=x2-2×6x+62-26=(x-6)2-26,
∵(x-6)2≥0,
∴(x-6)2-26≥-26,
∴代數(shù)式的最小值是-26,
故答案為:①0;②3;③-26;
(3)=(a-2)2+(b-4)2+10
∵(a-2)2≥0,(b-4)2≥0
∴(a-2)2+(b-4)2+10≥10
∴當(dāng)a=2,b=4時,代數(shù)式的最小值是10.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在數(shù)軸上點A,點B對應(yīng)的數(shù)分別是6,﹣6,∠DCE=90°(點C與點O重合,點D在數(shù)軸的正半軸上)
(1)如圖1,若CF平分∠ACE,則∠AOF= 度;點A與點B的距離=
(2)如圖2,將∠DCE沿數(shù)軸的正半軸向右平移t(0<t<3)個單位后,再繞點頂點C逆時針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時記∠DCF=α.
①當(dāng)t=1時,α= ;點B與點C的距離=
②猜想∠BCE和α的數(shù)量關(guān)系,并說明理由;
(3)如圖3,開始∠D1C1E1與∠DCE重合,將∠DCE沿數(shù)軸的正半軸向右平移t(0t3)個單位,再繞點頂點C逆時針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時記∠DCF=α,與此同時,將∠D1C1E1沿數(shù)軸的負半軸向左平移t(0t3)個單位,再繞點頂點C1順時針旋轉(zhuǎn)30t度,作C1F1平分∠AC1E1,記∠D1C1F1=β,若α與β滿足|α﹣β|=20°,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點F為BC的中點,連接EF.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為1,△ABC是⊙O的內(nèi)接等邊三角形,點D、E在圓上,四邊形BCDE為矩形,這個矩形的面積是( )
A.2
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題 1、化簡
2、若一次函數(shù)y=kx+b經(jīng)過點A(3,4)、B(4,5),求這一次函數(shù)的解析式.
(1)先化簡,再求值: ÷(2+ )
(2)若一次函數(shù)y=kx+b經(jīng)過點A(3,4)、B(4,5),求這一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中點、平行線、等腰直角三角形、等邊三角形都是常見的幾何圖形!
(1)如圖1,若點D為等腰直角三角形ABC斜邊BC的中點,點E,F(xiàn)分別在AB、AC邊上,且∠EDF=90°,連接AD、EF,當(dāng)BC=5 ,F(xiàn)C=2時,求EF的長度;
(2)如圖2,若點D為等邊三角形ABC邊BC的中點,點E,F(xiàn)分別在AB,AC邊上,且∠EDF=90°;M為EF的中點,連接CM,當(dāng)DF∥AB時,證明:3ED=2MC;
(3)如圖3,若點D為等邊三角形ABC邊BC的中點,點E,F(xiàn)分別在AB,AC邊上,且∠EDF=90°;當(dāng)BE=6,CF=0.8時,直接寫出EF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點D落在點D′處,則重疊部分△AFC的面積為( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)(k<0)的圖像經(jīng)過點A(,m),過點A作AB⊥x軸于點,且△AOB的面積為.
(1)求k和m的值;
(2)若一次函數(shù)y=ax+1的圖像經(jīng)過點A,并且與x軸相交于點C,求∠ACO的度數(shù)及的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com