【題目】請(qǐng)你仔細(xì)觀察下面一組圖形,依據(jù)其變化規(guī)律推斷第(5)個(gè)圖形中所有正方形面積之和為____________(其中圖 中出現(xiàn)的三角形均是直角三角形,四邊形均是正方形).

【答案】5

【解析】

根據(jù)勾股定理,第(2)個(gè)圖形中兩個(gè)小正方形的面積和等于第一個(gè)正方形的面積,圖形(2)中所有正方形的積和等于2;依此類推,可發(fā)現(xiàn)第(n)個(gè)圖形中所有正方形的面積和等于第一個(gè)正方形的面積的n倍,進(jìn)而得問題答案.

解:設(shè)第(2)個(gè)圖形中直角三角形的是三條邊分別是ab,c,

根據(jù)勾股定理,得a2+b2=c2,

S2+S3=S1=1

∴第(2)個(gè)圖形中所有正方形的面積之和為S1+S2+S3=2,

同理可得:第(3)個(gè)圖形中所有正方形的面積之和為3

可得規(guī)律:第(n)個(gè)圖形中所有正方形的面積之和為n,

∴第(5)個(gè)圖形中所有正方形的面積之和為5,

故答案為:5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC5,BC8,點(diǎn)D是邊BC上(不與B,C重合)一動(dòng)點(diǎn),∠ADE=∠BaDEAC于點(diǎn)E,下列結(jié)論:①AD2AEAB;②1.8≤AE5;⑤當(dāng)AD時(shí),△ABD≌△DCE;④△DCE為直角三角形,BD46.25.其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠DAB45°,AB2,P為線段AB上一動(dòng)點(diǎn),且不與點(diǎn)A重合,過點(diǎn)PPEABAD于點(diǎn)E,將∠A沿PE折疊,點(diǎn)A落在直線AB上點(diǎn)F處,連接DF、CF,當(dāng)△CDF為等腰三角形時(shí),AP的長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】人們?cè)陂L(zhǎng)期的數(shù)學(xué)實(shí)踐中總結(jié)了許多解決數(shù)學(xué)問題的方法,形成了許多光輝的數(shù)學(xué)想法,其中轉(zhuǎn)化思想是中學(xué)教學(xué)中最活躍,最實(shí)用,也是最重要的數(shù)學(xué)思想,例如將不規(guī)則圖形轉(zhuǎn)化為規(guī)則圖形就是研究圖形問題比較常用的一種方法。

問題提出:求邊長(zhǎng)分別為的三角形面積。

問題解決:在解答這個(gè)問題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出邊長(zhǎng)分別為的格點(diǎn)三角形ABC(如圖①),AB=是直角邊為12的直角三角形斜邊,BC=是直角邊分別為13的直角三角形的斜邊,AC=是直角邊分別為23 的直角三角形斜邊,用一個(gè)大長(zhǎng)方形的面積減去三個(gè)直角三角形的面積,這樣不需求ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積。

(1)請(qǐng)直接寫出圖①中ABC的面積為_______________ 。

(2)類比遷移:求邊長(zhǎng)分別為的三角形面積(請(qǐng)利用圖②的正方形網(wǎng)格畫出相應(yīng)的ABC,并求出它的面積)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計(jì)劃一次性購(gòu)買排球和籃球,每個(gè)籃球的價(jià)格比排球貴30元;購(gòu)買2個(gè)排球和3個(gè)籃球共需340元.

(1)求每個(gè)排球和籃球的價(jià)格:

(2)若該校一次性購(gòu)買排球和籃球共60個(gè),總費(fèi)用不超過3800元,且購(gòu)買排球的個(gè)數(shù)少于39個(gè).設(shè)排球的個(gè)數(shù)為m,總費(fèi)用為y元.

①求y關(guān)于m的函數(shù)關(guān)系式,并求m可取的所有值;

②在學(xué)校按怎樣的方案購(gòu)買時(shí),費(fèi)用最低?最低費(fèi)用為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則

①二次函數(shù)的最大值為a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④當(dāng)y>0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿A→D→B1cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)B,圖2是點(diǎn)F運(yùn)動(dòng)時(shí),FBC的面積y(cm2)隨時(shí)間x(s)變化的關(guān)系圖象,則a的值為( 。

A. B. 2 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD內(nèi)接于⊙O,∠DAB90°.

(Ⅰ)若ABAD,求∠ACB的度數(shù);

(Ⅱ)連接AC,若AD8,AB6,對(duì)角線AC平分∠DAB,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)一批單價(jià)為4元的日用品.若按每件5元的價(jià)格銷售,每月能賣出3萬件;若按每件6元的價(jià)格銷售,每月能賣出2萬件,假定每月銷售件數(shù)y(件)與價(jià)格x(元/件)之間滿足一次函數(shù)關(guān)系.

1)試求yx之間的函數(shù)關(guān)系式;

2)當(dāng)銷售價(jià)格定為多少時(shí),才能使每月的利潤(rùn)最大?每月的最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案