【題目】已知四邊形ABCD內(nèi)接于⊙O,∠DAB=90°.
(Ⅰ)若AB=AD,求∠ACB的度數(shù);
(Ⅱ)連接AC,若AD=8,AB=6,對(duì)角線AC平分∠DAB,求AC的長(zhǎng).
【答案】(Ⅰ)45°;(Ⅱ)7.
【解析】
(Ⅰ)連接BD,根據(jù)圓周角定理得到BD為直徑,推出△ABD為等腰直角三角形,于是得到∠ACB=∠ADB=45°;
(Ⅱ)如圖2,作BH⊥AC于H,根據(jù)勾股定理得到BD=10,根據(jù)角平分線的定義得到∠BAC=∠BAC=45°,推出△CDB為等腰直角三角形,得到BC=BD=,解直角三角形即可得到結(jié)論.
(Ⅰ)連接BD,
∵∠DAB=90°,
∴BD為直徑,
∵AD=AB,
∴△ABD為等腰直角三角形,
∴∠ACB=∠ADB=45°;
(Ⅱ)如圖,作BH⊥AC于H,
∵∠DAB=90°,
∴BD為直徑,,
∴∠BCD=90°,
∵AC平分∠DAB,
∴∠BAC=∠BAC=45°,
∴∠CBD=∠BDC=45°,
∴△CDB為等腰直角三角形,
∴,
在Rt△ABH中,AH=BH=AB=3,
在Rt△BCH中,,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)你仔細(xì)觀察下面一組圖形,依據(jù)其變化規(guī)律推斷第(5)個(gè)圖形中所有正方形面積之和為____________(其中圖 中出現(xiàn)的三角形均是直角三角形,四邊形均是正方形).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是⊙O的直徑,弧BA=弧BC,BD交AC于點(diǎn)E,點(diǎn)F在DB的延長(zhǎng)線上,且∠BAF=∠C.
(1)求證:AF是⊙O的切線;
(2)求證:△ABE∽△DBA;
(3)若BD=8,BE=6,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“手拉手”數(shù)學(xué)學(xué)習(xí)互助小組對(duì)矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進(jìn)行探究時(shí),遇到以下問題,請(qǐng)你逐一加以解答:
(1)如圖1,正方形ABCD中,EF⊥GH,EF分別交AB,CD于點(diǎn)E,F,GH分別交AD,BC于點(diǎn)G,H,則EF GH;(填“>”“=”或“<”)
(2)如圖2,矩形ABCD中,EF⊥GH,EF分別交AB,CD于點(diǎn)E,F,GH分別交AD,BC于點(diǎn)G,H,求證: =;
(3)如圖3,四邊形ABCD中,∠ABC=∠ADC=90°,BC=3,CD=5,AD=7.5,AM⊥DN,點(diǎn)M,N分別在邊BC,AB上,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,.已知A(-2,0)、B(6,0)、D(0,3)反比例函數(shù)的圖象經(jīng)過點(diǎn).
(1)求點(diǎn)的坐標(biāo)和反比例函數(shù)的解析式;
(2)將四邊形沿軸向上平移個(gè)單位長(zhǎng)度得到四邊形,問點(diǎn)是否落在(1)中的反比例函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠BAC=20°,點(diǎn)O是AB的中點(diǎn),將OB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α角時(shí)(0°<α<180°),得到OP,當(dāng)△ACP為等腰三角形時(shí),α的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的的直徑,弦CD與AB相交,∠BCD=25°。
(1)如圖1,求∠ABD的大。
(2)如圖2,過點(diǎn)D作O的切線,與AB的延長(zhǎng)線交于點(diǎn)P,若DP∥AC,求∠OCD的度數(shù)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com