【題目】某中學(xué)對全校學(xué)生進行文明禮儀知識測試,為了解測試結(jié)果,隨機抽取部分學(xué)生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).

請你根據(jù)圖中所給的信息解答下列問題:

(1)請將以上兩幅統(tǒng)計圖補充完整;

(2)若“一般”和“優(yōu)秀”均被視為達標成績,則該校被抽取的學(xué)生中有達標率為 ;

(3)若該校學(xué)生有學(xué)生3000人,請你估計此次測試中,全校達標的學(xué)生有多少人?

【答案】(1)30% ,補圖見解析;(2)80%;(3)2400人

【解析】(1)成績一般的學(xué)生占百分比=1-成績優(yōu)秀的百分比-成績不合格的百分比,測試的相似總數(shù)=不合格的人數(shù)÷不合格人數(shù)的百分比,繼而求出成績優(yōu)秀的人數(shù).

(2)將成績一般和優(yōu)秀的人數(shù)相加然后計算達標率即可.

(3)該校學(xué)生文明禮儀總數(shù)測試中 成績達標的人數(shù)=3000×成績達標的學(xué)生所占的百分比.

解:(1)成績一般的學(xué)生占的百分比=1﹣20%﹣50%=30%,

測試的學(xué)生總數(shù)=24÷20%=120人,

成績優(yōu)秀的人數(shù)=120×50%=60人,

所補充圖形如下所示:

(2)該校被抽取的學(xué)生中達標的人數(shù)=36+60=96,

該校被抽取的學(xué)生中有達標率為:96÷120=0.8=80%.

(3)3000×(50%+30%)=2400(人).

答:估計全校達標的學(xué)生有2400人.

“點睛”此題主要考查了扇形統(tǒng)計圖和直方統(tǒng)計圖及利用樣本估計總體,正確利用扇形統(tǒng)計圖和直方統(tǒng)計圖中數(shù)據(jù)得出正確信息是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把方程x(x+1)=2化成一般形式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某教學(xué)活動小組選定測量小山上方某信號塔PQ的高度,他們在A處測得信號塔頂端P的仰角為45°,信號塔低端Q的仰角為31°,沿水平地面向前走100米到處,測得信號塔頂端P的仰角為68°.求信號塔PQ的高度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin68°≈ 0.93,cos68° ≈ 0.37,tan68° ≈ 2.48,tan31° ≈ 0.60,sin31° ≈ 0.52,cos31°≈0.86)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場銷售甲、乙兩種商品,它們的進價和售價如表,

進價(元)

售價(元)

15

20

35

43


(1)若該商場購進甲、乙兩種商品共100件,恰好用去2700元,求購進甲、乙兩種商品各多少件?
(2)該商場為使銷售甲、乙兩種商品共100件的總利潤(利潤=售價﹣進價)不少于750元,且不超過760元,請你幫助該商場設(shè)計相應(yīng)的進貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把不等式組 的解集在數(shù)軸上表示正確的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.

(1)求每臺A型電腦和B型電腦的銷售利潤;

(2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

①求y關(guān)于x的函數(shù)關(guān)系式;

②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x、y的方程組
(1)求這個方程組的解;
(2)當m取何值時,這個方程組的解中,x大于1,y不小于﹣1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市區(qū)有一塊長為(3a+b)米,寬為(2a+b)米的長方形地塊,現(xiàn)準備進行綠化,中間的有一邊長為(a+b)米的正方形區(qū)域?qū)⑿藿ㄒ蛔裣,則綠化的面積是多少平方米?并求出當a=5,b=3時的綠化面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一長方形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將△AED以DE為折痕向右折疊,AE與BC交于點F,求△CEF的面積.

查看答案和解析>>

同步練習(xí)冊答案