【題目】如圖,P是直徑AB上的一點,AB=6,CPAB交半圓于點C,以BC為直角邊構(gòu)造等腰RtBCD,∠BCD=90°,連接OD

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對線段AP,BCOD的長度之間的關(guān)系進(jìn)行了探究.

下面是小明的探究過程,請補(bǔ)充完整:

1)對于點PAB上的不同位置,畫圖、測量,得到了線段APBC,OD的長度的幾組值,如下表:

位置1

位置2

位置3

位置4

位置5

位置6

位置

AP

0.00

1.00

2.00

3.00

4.00

5.00

BC

6.00

5.48

4.90

4.24

3.46

2.45

OD

6.71

7.24

7.07

6.71

6.16

5.33

AP,BC,OD的長度這三個量中,確定________的長度是自變量,________的長度和________的長度都是這個自變量的函數(shù);

2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)的圖象;

3)結(jié)合函數(shù)圖象,解決問題:當(dāng)OD=2BC時,線段AP的長度約為________

【答案】(1)AP,BC,ODBC,AP,OD;(2)如圖1或圖2所示:見解析;(3)線段AP的長度約為4.5

【解析】

1)由函數(shù)的自變量及函數(shù)的定義即可得出答案;

2)利用描點法畫出圖象即可.

3)由數(shù)形結(jié)合的思想,直接觀察圖象,由x=4.5時所對應(yīng)的兩個函數(shù)值即可發(fā)現(xiàn)此時OD=2BC.

(1) 由表格可確定BC隨著AP的變化而變化,BD隨著BC的變化而變化,故APBC的長度是自變量,OD或BC的長度和AP,OD的長度都是這個自變量的函數(shù);

故答案為:AP,BCODBCAP,OD;在AP,BCOD

(2)如圖1或圖2所示:

1

2

(3)由表格可知:當(dāng)AP=4時,BC=3.46,OD=6.16; 當(dāng)AP=4時,BC=2.45,OD=5.33,

∴當(dāng)OD=2BC

由可知線段AP的長度約為4.5

3

4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象與x軸交于點A,B(點A在點B的左側(cè)),與y軸交于點C,頂點為P.

1)直接寫出點AC,P的坐標(biāo).

2)畫出這個函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象交x軸于(-1,0)點,則下列結(jié)論中正確的是(

A.c0B.a-b+c<0C.b2<4acD.2a+b=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤被分成面積相等的三個扇形,每個扇形上分別標(biāo)上,1,-1三個數(shù)字.小明轉(zhuǎn)動轉(zhuǎn)盤,小亮猜結(jié)果,如果轉(zhuǎn)盤停止后指針指向的結(jié)果與小亮所猜的結(jié)果相同,則小亮獲勝,否則小明獲勝.

1)如果小時轉(zhuǎn)動轉(zhuǎn)盤一次,小亮猜的結(jié)果是正數(shù),那么小亮獲勝的概率是 .

2)如果小明連續(xù)轉(zhuǎn)動轉(zhuǎn)盤兩次,小亮猜兩次的結(jié)果都是正數(shù),請用畫樹狀圖或列表法求出小亮獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的自變量x與函數(shù)值y的部分對應(yīng)值如下表:

x

-2

-1

0

1

2

y=ax2+bx+c

t

m

-2

-2

n

根據(jù)以上列表,回答下列問題:

1)直接寫出c的值和該二次函數(shù)圖象的對稱軸;

2)寫出關(guān)于x的一元二次方程ax2+bx+c=t的根;

3)若m=-1,求此二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在O中,直徑AB4,點P、Q均在O上,且∠BAP60°,∠BAQ30°,則弦PQ的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+c與兩坐標(biāo)軸分別交于點A、B、C,直線y=﹣x+4經(jīng)過點B,與y軸交點為D,M3,﹣4)是拋物線的頂點.

1)求拋物線的解析式.

2)已知點N在對稱軸上,且AN+DN的值最小.求點N的坐標(biāo).

3)在(2)的條件下,若點E與點C關(guān)于對稱軸對稱,請你畫出△EMN并求它的面積.

4)在(2)的條件下,在坐標(biāo)平面內(nèi)是否存在點P,使以A、B、N、P為頂點的四邊形是平行四邊形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mxx軸的負(fù)半軸于點A.點By軸正半軸上一點,點A關(guān)于點B的對稱點A′恰好落在拋物線上.過點A′x軸的平行線交拋物線于另一點C.若點A′的橫坐標(biāo)為1,則A′C的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點為D﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac0②當(dāng)x﹣1時,yx增大而減;③a+b+c0;④若方程ax2+bx+c﹣m=0沒有實數(shù)根,則m2; 3a+c0.其中正確結(jié)論的個數(shù)是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步練習(xí)冊答案