【題目】為了弘揚傳統(tǒng)文化,提高學(xué)生文明意識,育紅學(xué)校組織全校80個班級進行“誦經(jīng)典,傳文明”演講賽,比賽后對各班成績進行了整理,分成4個小組(x表示成績,單位:分):A組:60≤x<70;B組:70≤x<80;C組:80≤x<90;D組:90≤x<100,并且繪制了如右不完整的扇形統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題:
(1)求扇形統(tǒng)計圖中,B組對應(yīng)的圓心角是多少度?
(2)學(xué)校從D組中選取了2名男生和2名女生組成代表隊參加了區(qū)級比賽,由于表現(xiàn)突出,被要求再從這4名學(xué)生中隨機選取兩名同學(xué)參加市級比賽,請用列表或畫樹狀圖的方法,求恰好選中一名男生和一名女生的概率.
【答案】(1)108°;(2)
【解析】
(1)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得扇形統(tǒng)計圖中,B組對應(yīng)的圓心角是多少度;
(2)根據(jù)題意可以畫出相應(yīng)的樹狀圖,從而可以求得相應(yīng)的概率.
解:(1)B組的班級數(shù)為:80﹣80×40%﹣20﹣80×5%=24,
扇形統(tǒng)計圖中,B組對應(yīng)的圓心角是:360°×=108°,
即扇形統(tǒng)計圖中,B組對應(yīng)的圓心角是108°;
(2)由題意可得,樹狀圖如下圖所示,
恰好選中一名男生和一名女生的概率是,
即恰好選中一名男生和一名女生的概率是.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,聯(lián)結(jié)AP并延長AP交CD于F點,
(1)求證:四邊形AECF為平行四邊形;
(2)如果PA=PC,聯(lián)結(jié)BP,求證:△APB△EPC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)若m為非負整數(shù),且該方程的根都是無理數(shù),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)市委政府“加快建設(shè)天藍水碧地綠的美麗長沙”的號召,我市某街道決定從備選的五種樹中選購一種進行栽種.為了更好地了解社情民意,工作人員在街道轄區(qū)范圍內(nèi)隨機抽取了部分居民,進行“我最喜歡的一種樹”的調(diào)查活動(每人限選其中一種樹),并將調(diào)查結(jié)果整理后,繪制成如圖兩個不完整的統(tǒng)計圖:
請根據(jù)所給信息解答以下問題:
(1)這次參與調(diào)查的居民人數(shù)為: ;
(2)請將條形統(tǒng)計圖補充完整;
(3)請計算扇形統(tǒng)計圖中“楓樹”所在扇形的圓心角度數(shù);
(4)已知該街道轄區(qū)內(nèi)現(xiàn)有居民8萬人,請你估計這8萬人中最喜歡玉蘭樹的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)﹣1≤x≤1時,﹣1≤y≤1,則稱這個函數(shù)為“閉函數(shù)”.例如:y=x,y=﹣x均是“閉函數(shù)”(如圖所示).已知:y=ax2+bx+c(a≠0)是“閉函數(shù)”,且拋物線經(jīng)過點A(1,﹣1)和點B(﹣1,1).
(1)請說明a、c的數(shù)量關(guān)系并確定b的取值;
(2)請你確定a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的兩條內(nèi)角平分線BD與CD交于點D,設(shè)∠A的度數(shù)為x,∠BDC的度數(shù)為y,則y關(guān)于x的函數(shù)圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與x軸、y軸分別交于A、C兩點,與反比例函數(shù)的圖象交于B點,B點在第四象限,BD垂直平分OA,垂足為D,OB=,OA=BD.
(1)求該一次函數(shù)和反比例函數(shù)的解析式;
(2)延長BO交反比例函數(shù)的圖象于點E,連接ED、EC,求四邊形BCED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,點F在DE的延長線上,且AF=CE=AE.
(1)求證:四邊形ACEF是平行四邊形;
(2)當(dāng)∠B=30°時,試猜想四邊形ACEF是什么圖形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,,將線段沿軸的正方向平移個單位,得到線段,恰好都落在反比例函數(shù)的圖象上.
(1)用含的代數(shù)式表示點,的坐標(biāo);
(2)求的值和反比例函數(shù)的表達式;
(3)點為反比例函數(shù)圖象上的一個動點,直線與軸交于點,若,請直接寫出點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com