【題目】(1)如圖1,AM∥CN,求證:
①∠MAB+∠ABC+∠BCN=360°;
②∠MAE+∠AEF+∠EFC+∠FCN=540°;
(2)如圖2,若平行線AM與CN間有n個點,根據(jù)(1)中的結(jié)論寫出你的猜想并證明.
【答案】(1)①詳見解析;②詳見解析;(2)猜想:若平行線間有n個點,則所有角的和為(n+1)180°,證明詳見解析
【解析】
(1)①過點作BG∥AM,則AM∥CN∥BG,依據(jù)平行線的性質(zhì),即可得到∠ABG+∠BAM=180°,∠CBG+∠BCN=180°,即可得到結(jié)論;②過E作EP∥AM,過F作FQ∥CN,依據(jù)平行線的性質(zhì),即可得到∠MAE+∠AEP=180°,∠FEP+∠EFQ=180°,∠CFQ+∠FCN=180°,即可得到結(jié)論;(2)過n個點作AM的平行線,則這些直線互相平行且與CN平行,即可得出所有角的和為(n+1)180°.
解:(1)①證明:如圖1,過點作BG∥AM,則AM∥CN∥BG
∴∠ABG+∠BAM=180°,∠CBG+∠BCN=180°
∴∠ABG+∠BAM+∠CBG+∠BCN=360°
∴∠MAB+∠ABC+∠BCN=360°
②如圖,過E作EP∥AM,過F作FQ∥CN,
∵AM∥CN,∴EP∥FQ,
∴∠MAE+∠AEP=180°,∠FEP+∠EFQ=180°,∠CFQ+∠FCN=180°
∴∠MAE+∠AEF+∠EFC+∠FCN=180°×3=540°;
(2)猜想:若平行線間有n個點,則所有角的和為(n+1)180°.
證明:如圖2,過n個點作AM的平行線,則這些直線互相平行且與CN平行,
∴結(jié)合(1)問得:
所有角的和為(n+1)180°.
科目:初中數(shù)學 來源: 題型:
【題目】(1)定義:直角三角形兩直角邊的平方和等于斜邊的平方。如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=___.
(2)應(yīng)用:已知正方形ABCD的邊長為4,點P為AD邊上的一點,AP=AD,請利用“兩點之間線段最短”這一原理,在線段AC上畫出一點M,使MP+MD最小,并直接寫出最小值的平方為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求PQ的長.
(2)當點Q在邊BC上運動時,出發(fā)幾秒鐘后,△PQB能形成等腰三角形?
(3)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形MNPQ放置在矩形ABCD中,使點M,N分別在AB,AD邊上滑動,若MN=6,PN=4,在滑動過程中,點A與點P的距離AP的最大值為( 。
A. 4 B. 2 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,點D是BC上一動點,以BD為邊在BC的右側(cè)作等邊△BDE,F是DE的中點,連結(jié)AF,CF,則AF+CF的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我市中小學標準化建設(shè)工程中,某學校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦、每臺電子白板各多少萬元?
(2)根據(jù)學校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,該校有幾種購買方案?
(3)上面的哪種方案費用最低?按費用最低方案購買需要多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且速度都為1cm/s,連接AQ、CP交于點M,下面四個結(jié)論:①BP=CM;②△ABQ≌△CAP;③∠CMQ的度數(shù)不變,始終等于60°;④當?shù)?/span>秒或第秒時,△PBQ為直角三角形,正確的有幾個 ( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小區(qū)為了綠化環(huán)境,計劃分兩次購進A、B兩種花草,第一次分別購進A、B兩種花草30棵和15棵,共花費675元;第二次分別購進A、B兩種花草12棵和5棵兩次共花費940元兩次購進的A、B兩種花草價格均分別相同.
、B兩種花草每棵的價格分別是多少元?
若再次購買A、B兩種花草共12棵、B兩種花草價格不變,且A種花草的數(shù)量不少于B種花草的數(shù)量的4倍,請你給出一種費用最省的方案,并求出該方案所需費用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com