已知:把矩形AOBC放入直角坐標(biāo)系xOy中,使OB、OA分別落在x軸、y軸上,點(diǎn)A的坐標(biāo)為(0,2
3
),連接AB,∠OAB=60°,將△ABC沿AB翻折,使C點(diǎn)落在該坐標(biāo)平面內(nèi)的D點(diǎn)處,AD交x軸于點(diǎn)E.
(1)求D點(diǎn)坐標(biāo);
(2)求經(jīng)過(guò)點(diǎn)A、D的直線的解析式.
根據(jù)題意,可分以下兩種情況:
第一種情況矩形在第一象限,如圖.
(1)OA=2
3
,∠AOB=90°,∠OAB=60°,
∴OB=OA•tan60°=2
3
3
=6.
又Rt△ACB≌Rt△ADB,
∴AC=AD=OB=6.
過(guò)點(diǎn)D作y軸的垂線,垂足為F,
∠OAB=60°,
∴∠BAC=∠BAD=∠DAF=30°.
∴DF=
1
2
AD=3.
AF=AD•cos30°=6×
3
2
=3
3

∴OF=AF-OA=3
3
-2
3
=
3

∴點(diǎn)D的坐標(biāo)為(3,-
3
).
(2分)
(2)設(shè)經(jīng)過(guò)點(diǎn)A(0,2
3
)、D(3,-
3
)的直線的解析式為y=kx+b,
b=2
3
3k+b=-
3

解得
b=2
3
k=-
3

∴經(jīng)過(guò)點(diǎn)A、D的直線的解析式為y=-
3
x+2
3
. (4分)
第二種情況矩形在第二象限,(圖略)
(1)由第一種情況,根據(jù)對(duì)稱性得,點(diǎn)D的坐標(biāo)為(-3,-
3
).(5分)
(2)設(shè)經(jīng)過(guò)點(diǎn)A(0,2
3
)、D(3,-
3
)的直線的解析式為y=kx+b,
b=2
3
-3k+b=-
3
,
解得
k=
3
b=2
3

∴經(jīng)過(guò)點(diǎn)A、D的直線的解析式為y=
3
x+2
3
. (7分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

2006年的夏天,某地旱情嚴(yán)重.該地10號(hào),15號(hào)的人日均用水量的變化情況如圖所示.若該地10號(hào),15號(hào)的人均用水量分別為18千克和15千克,并一直按此趨勢(shì)直線下降.當(dāng)人日均用水量低于10千克時(shí),政府將向當(dāng)?shù)鼐用袼退敲凑畱?yīng)開始送水的號(hào)數(shù)為( 。
A.23B.24C.25D.26

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

受國(guó)際金融危機(jī)影響,市自來(lái)水公司號(hào)召全市市民節(jié)約用水.決定采取月用水量分段收費(fèi)辦法,某戶居民應(yīng)交水費(fèi)y(元)與用水量x(噸)的函數(shù)關(guān)系如圖所示.若該用戶本月用水21噸,則應(yīng)交水費(fèi)(  )
A.52.5元B.45元C.42元D.37.8元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系內(nèi),已知點(diǎn)A(0,6)、點(diǎn)B(8,0),動(dòng)點(diǎn)P從點(diǎn)A開始在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O移動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B開始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng),設(shè)點(diǎn)P、Q移動(dòng)的時(shí)間為t秒.
(1)求直線AB的解析式;
(2)當(dāng)t為何值時(shí),以點(diǎn)A、P、Q為頂點(diǎn)的三角形與△AOB相似?
(3)當(dāng)t=2秒時(shí),四邊形OPQB的面積為多少個(gè)平方單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知變量y與x的函數(shù)圖象如圖所示,則函數(shù)關(guān)系式為( 。
A.y=-3x-3(0≤x≤2)B.y=-3x+3
C.y=
3
2
x-3(0≤x≤2)
D.y=3x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,⊙O的直徑為10,弦AC=8,點(diǎn)B在圓周上運(yùn)動(dòng)(與A、C兩點(diǎn)不重合),連接BC、BA,過(guò)點(diǎn)C作CD⊥AB于D、設(shè)CB的長(zhǎng)為x,CD的長(zhǎng)為y.
(1)求y關(guān)于x的函數(shù)關(guān)系式;當(dāng)以BC為直徑的圓與AC相切時(shí),求y的值;
(2)在點(diǎn)B運(yùn)動(dòng)的過(guò)程中,以CD為直徑的圓與⊙O有幾種位置關(guān)系,并求出不同位置時(shí)y的取值范圍;
(3)在點(diǎn)B運(yùn)動(dòng)的過(guò)程中,如果過(guò)B作BE⊥AC于E,那么以BE為直徑的圓與⊙O能內(nèi)切嗎?若不能,說(shuō)明理由;若能,求出BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商場(chǎng)計(jì)劃投入一筆資金采購(gòu)一批緊俏商品,經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),如果本月初出售,可獲利10%,然后將本利再投資其他商品,到下月初又可獲利10%;如果下月初出售可獲利25%,但要支付倉(cāng)儲(chǔ)費(fèi)8000元.設(shè)商場(chǎng)投入資金x元,請(qǐng)你根據(jù)商場(chǎng)的資金情況,向商場(chǎng)提出合理化建議,說(shuō)明何時(shí)出售獲利較多.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲、乙兩個(gè)工程隊(duì)同時(shí)挖掘兩段長(zhǎng)度相等的隧道,如圖是甲、乙兩隊(duì)挖掘隧道長(zhǎng)度y(米)與挖掘時(shí)間x(時(shí))之間關(guān)系的部分圖象.請(qǐng)解答下列問(wèn)題:
(1)在前2小時(shí)的挖掘中,甲隊(duì)的挖掘速度為______米/小時(shí),乙隊(duì)的挖掘速度為______米/小時(shí);
(2)①當(dāng)2≤x≤6時(shí),求出y與x之間的函數(shù)關(guān)系式;
②開挖幾小時(shí)后,甲隊(duì)所挖掘隧道的長(zhǎng)度開始超過(guò)乙隊(duì)?
(3)如果甲隊(duì)施工速度不變,乙隊(duì)在開挖6小時(shí)后,施工速度增加到12米/小時(shí),結(jié)果兩隊(duì)同時(shí)完成了任務(wù).問(wèn)甲隊(duì)從開挖到完工所挖隧道的總長(zhǎng)度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知點(diǎn)A(-1,0)和點(diǎn)B(1,2),在y軸上確定點(diǎn)P,使得△ABP為直角三角形,則滿足條件的點(diǎn)P共有(  )
A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案