已知:如圖,⊙O的直徑為10,弦AC=8,點B在圓周上運動(與A、C兩點不重合),連接BC、BA,過點C作CD⊥AB于D、設CB的長為x,CD的長為y.
(1)求y關于x的函數(shù)關系式;當以BC為直徑的圓與AC相切時,求y的值;
(2)在點B運動的過程中,以CD為直徑的圓與⊙O有幾種位置關系,并求出不同位置時y的取值范圍;
(3)在點B運動的過程中,如果過B作BE⊥AC于E,那么以BE為直徑的圓與⊙O能內(nèi)切嗎?若不能,說明理由;若能,求出BE的長.
(1)如圖1,連接OA、OC、.過圓心O作OE⊥AC于點E.
∵直徑為10,弦AC=8,
∴OC=5,CE=8,∠AOE=∠COE.
又∵∠ABC=
1
2
∠AOC=∠COE,CD⊥AB,CB的長為x,
CD的長為y,
∴y=
4
5
x,當以CB為直徑的圓與AC相切時,點B與點M重合,
此時,x=6,y=4.8;

(2)以DC為直徑的圓與⊙O的位置關系是相交或內(nèi)切,
①當CB=CA=8時,兩圓內(nèi)切,y=
4
5
×8=6.4;
②當CB≠8時,兩圓相交,0<y≤8,且y≠6.4.

(3)以BE為直徑的圓與⊙O可以內(nèi)切,
∵BE⊥AC,CD⊥AB,
∴BE=5-3=2或BE=5+3=8.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一次函數(shù)y=x+2的圖象分別交x軸,y軸于A、B兩點,⊙O1過以OB為邊長的正方形OBCD的四個頂點,兩動點P、Q同時從點A出發(fā)在四邊形ABCD上運動,其中動點P以每秒
2
個單位長度的速度沿A→B→A運動后停止;動點Q以每秒2個單位長度的速度沿A→O→D→C→B運動,AO1交y軸于E點,P、Q運動的時間為t(秒).
(1)直接寫出E點的坐標和S△ABE的值;
(2)試探究點P、Q從開始運動到停止,直線PQ與⊙O1有哪幾種位置關系,并指出對應的運動時間t的范圍;
(3)當Q點運動在折線AD→DC上時,是否存在某一時刻t使得S△APQ:S△ABE=3:4?若存在,請確定t的值和直線PQ所對應的函數(shù)解析式;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知△ABC,∠BAC=90°,AB=AC=4,分別以AC,AB所在直線為x軸,y軸建立直角坐標系(如圖).點M(m,n)是直線BC上的一個動點,設△MAC的面積為S.
(1)求直線BC的解析式;
(2)求S關于m的函數(shù)解析式;
(3)是否存在點M,使△AMC為等腰三角形?若存在,求點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xoy中,⊙O1與x軸交于A、B兩點,與y軸正半軸交于C點,已知A(-1,0),O1(1,0)
(1)求出C點的坐標.
(2)過點C作CDAB交⊙O1于D,連接BD,求證:四邊形ABDC是等腰梯形.
(3)若過點C的直線恰好平分四邊形ABCD的面積,求出該直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:把矩形AOBC放入直角坐標系xOy中,使OB、OA分別落在x軸、y軸上,點A的坐標為(0,2
3
),連接AB,∠OAB=60°,將△ABC沿AB翻折,使C點落在該坐標平面內(nèi)的D點處,AD交x軸于點E.
(1)求D點坐標;
(2)求經(jīng)過點A、D的直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,ON為過原點的一條直線,點E、F為x、y軸上的任意兩點,P為直線ON上一動點(不與原點O重合),PM⊥x軸于M點.
(1)若P(a,a)為直線ON上在第一象限內(nèi)的任意一點,求直線ON的解析式;
(2)連接PE、PF,若∠PFO+∠PEO=180°,在(1)的條件下,試問線段PE與PF之間是否存在一定的數(shù)量關系,并說明理由;
(3)當P在直線ON上的第一象限內(nèi)任意運動時,在(1)和(2)的條件下,
OE+OF
OM
是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中有兩條直線:y=
3
5
x+
9
5
和y=-
3
2
+6,它們的交點為P,且它們與x軸的交點分別為A,B.
(1)求A,B,P的坐標;(2)求△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖在平面直角坐標系中,矩形OABC的邊OC=6,對角線OB所在直線的函數(shù)解析式y=
3
4
x

(1)直接寫出C點的坐標;
(2)若D是BC邊上的點,過D作DE⊥OB于E,已知DE=3.6.
①求出CD的長;
②以點C為圓心,CD長為半徑作⊙C、試問在對角線OB上是否存在點P,使得以點P為圓心的⊙P與⊙C、x軸都相切?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,求L1的函數(shù)表達式.

查看答案和解析>>

同步練習冊答案