如圖,△ABC中,AB=AC,I為△ABC的內(nèi)心,AI的延長線交△ABC的外接圓于點D,過點I作BC的平行線分別交AB、AC于E、F,若O是△DEF外接圓的圓心.
證明:(1)O點在線段AD上;
(2)AB、AC是⊙O的切線.
如圖,四邊形ABCD中,∠ADC=60°,∠ABC=30°,DA=DC,求證,BD2=AB2+BC2

證明:(1)∵AB=AC,I為△ABC的內(nèi)心,即AI平分∠BAC

又∵BC∥EF,
∴AI垂直平分EF,
而O是△DEF外接圓的圓心,則O點一定在EF的垂直平分線上,
∴O點在線段AD上;

(2)連接OE,OF,BD,BI,如圖,
∵AD垂直平分BC,
∴AD過△ABC外接圓的圓心,即AD為△ABC外接圓的直徑,
∴∠ABD=90°,而∠AIE=90°,
∴I、E、B、D四點共圓,
∴∠IDE=∠IBE=∠IBC,而∠EOI=2∠EDI,
∴∠EOI=∠ABC,而∠ABC+∠BAD=90°,
∴∠EOI+∠BAD=90°,即∠OEA=90°,
∴AB是⊙O的切線.同理可得AC是⊙O的切線.

證明:
連接AC,因為AD=DC,∠ADC=60°
則△ACD是等邊三角形,
過B作BE⊥AB,使BE=BC,連接CE,AE,
則∠EBC=90°-∠ABC=90°-30°=60°,
∴△BCE是正三角形,
又∠ACE=∠ACB+∠BCE=∠ACB+60°
∠DCB=∠ACB+∠ACD=∠ACB+60°
∴∠ACE=∠DCB
又DC=AC,BC=CE
所以△DCB≌△ACE
所以AE=BD
在直角三角形ABE中AE2=AB2+BE2,
即BD2=AB2+BC2
分析:(1)由AB=AC,I為△ABC的內(nèi)心,得AI垂直平分BC,而BC∥EF,得到AI垂直平分EF,所以O(shè)點一定在EF的垂直平分線上;
(2)連OE,OF,BD,BI,由AD為△ABC外接圓的直徑,易知I、E、B、D四點共圓,所以∠IDE=∠IBE=∠IBC,∠EOI=2∠EDI,∴∠EOI=∠ABC,而∠ABC+∠BAD=90°,得∠EOI+∠BAD=90°,即∠OEA=90°.
連接AC,過B作BE⊥AB,使BE=BC,連接CE,AE,則△ACD,△BCE是等邊三角形,易證△DCB≌△ACE,AE=BD,在直角三角形ABE中AE2=AB2+BE2,即BD2=AB2+BC2
點評:本題考查了圓的切線的判定方法.經(jīng)過半徑的外端點與半徑垂直的直線是圓的切線.當已知直線過圓上一點,要證明它是圓的切線,則要連接圓心和這個點,證明這個連線與已知直線垂直即可;當沒告訴直線過圓上一點,要證明它是圓的切線,則要過圓心作直線的垂線,證明垂線段等于圓的半徑.同時考查了三角形內(nèi)心的性質(zhì)和幾何中輔助線的作法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習冊答案