如圖,△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F為垂足,則下列四個結(jié)論:(1)AD上任意一點(diǎn)到點(diǎn)C、D的距離相等;(2)AD上任意一點(diǎn)到AB、AC的距離相等;(3)AD⊥BC且BD=CD;(4)∠BDE=∠CDF,其中正確的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
C
【解析】
試題分析:先根據(jù)等腰三角形三線合一的性質(zhì)得出AD是BC的中垂線,再由中垂線的性質(zhì)可判斷①正確;
根據(jù)角平分線的性質(zhì)可判斷②正確;
根據(jù)等腰三角形三線合一的性質(zhì)得出AD是BC的中垂線,從而可判斷③正確;
根據(jù)△BDE和△DCF均是直角三角形,而根據(jù)等腰三角形的性質(zhì)可得出∠B=∠C,由等角的余角相等即可判斷④正確.
∵AB=AC,AD是∠BAC的平分線,
∴AD⊥BC,BD=CD,
∴線段AD上任一點(diǎn)到點(diǎn)C、點(diǎn)B的距離相等,
∴①正確;
∵AD是∠BAC的平分線,
∴AD上任意一點(diǎn)到AB、AC的距離相等,②正確;
∵AB=AC,AD是∠BAC的平分線,
∴AD⊥BC,BD=CD,
∴③正確;
∵AB=AC,
∴∠B=∠C;
∵∠BED=∠DFC=90°,
∴∠BDE=∠CDF,④正確.
故選D.
考點(diǎn):本題考查的是等腰三角形的性質(zhì)、直角三角形的性質(zhì)及角平分線的性質(zhì)
點(diǎn)評:解答本題的關(guān)鍵是掌握好等腰三角形的三線合一:底邊上的高、中線,頂角平分線重合。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com