【題目】如圖,直線y=﹣x﹣4與拋物線y=ax2+bx+c相交于A,B兩點,其中A,B兩點的橫坐標分別為﹣1和﹣4,且拋物線過原點.
(1)求拋物線的解析式;
(2)在坐標軸上是否存在點C,使△ABC為等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;
(3)若點P是線段AB上不與A,B重合的動點,過點P作PE∥OA,與拋物線第三象限的部分交于一點E,過點E作EG⊥x軸于點G,交AB于點F,若S△BGF=3S△EFP,求的值.
【答案】(1)拋物線解析式為y=x2+4x;(2)存在滿足條件的點C,其坐標為(0,﹣3﹣)或(0,﹣3﹣)或(﹣4+3,0)或(﹣4﹣3,0)或(﹣1,0)或(0,1)或(2,0)或(0, )或(0,﹣);(3).
【解析】試題分析:(1)由直線解析式可分別求得A、B兩點的坐標,利用待定系數法可求得拋物線解析式;
(2)當AB=AC時,點C在y軸上,可表示出AC的長度,可求得其坐標;當AB=BC時,可知點C在x軸上,可表示出BC的長度,可求得其坐標;當AC=BC時點C在線段AB的垂直平分線與坐標軸的交點處,可求得線段AB的中點的坐標,可求得垂直平分線的解析式,則可求得C點坐標;
(3)過點P作PQ⊥EF,交EF于點Q,過點A作AD⊥x軸于點D,可證明△PQE∽△ODA,可求得EQ=3PQ,再結合F點在直線AB上,可求得FQ=PQ,則可求得EF=4PQ,利用三角形的面積的關系可求得GF與PQ的關系,則可求得比值.
試題解析:(1)∵A,B兩點在直線y=﹣x﹣4上,且橫坐標分別為﹣1、﹣4,
∴A(﹣1,﹣3),B(﹣4,0),
∵拋物線過原點,
∴c=0,
把A、B兩點坐標代入拋物線解析式可得 ,解得 ,
∴拋物線解析式為y=x2+4x;
(2)∵△ABC為等腰三角形,
∴有AB=AC、AB=BC和CA=CB三種情況,
①當AB=AC時,當點C在y軸上,設C(0,y),
則AB= =3 ,AC=,
∴3=,解得y=﹣3﹣ 或y=﹣3+,
∴C(0,﹣3﹣)或(0,﹣3﹣);
當點C在x軸上時,設C(x,0),則AC=,
∴=3,解得x=﹣4或x=2,當x=﹣4時,B、C重合,舍去,
∴C(2,0);
②當AB=BC時,當點C在x軸上,設C(x,0),
則有AB=3,BC=|x+4|,
∴|x+4|=3,解得x=﹣4+3或x=﹣4﹣3,
∴C(﹣4+3,0)或(﹣4﹣3,0);
當點C在y軸上,設C(0,y),則BC=,
∴=3,解得y=或y=﹣,
∴C(0, )或(0,﹣);
③當CB=CA時,則點C在線段AB的垂直平分線與y軸的交點處,
∵A(﹣1,﹣3),B(﹣4,0),
∴線段AB的中點坐標為(﹣,﹣),
設線段AB的垂直平分線的解析式為y=x+d,
∴﹣=﹣+d,解得d=1,
∴線段AB的垂直平分線的解析式為y=x+1,
令x=0可得y=1,令y=0可求得x=﹣1,
∴C(﹣1,0)或(0,1);
綜上可知存在滿足條件的點C,其坐標為(0,﹣3﹣)或(0,﹣3﹣)或(﹣4+3,0)或(﹣4﹣3,0)或(﹣1,0)或(0,1)或(2,0)或(0, )或(0,﹣);
(3)過點P作PQ⊥EF,交EF于點Q,過點A作AD⊥x軸于點D,
∵PE∥OA,GE∥AD,
∴∠OAD=∠PEG,∠PQE=∠ODA=90°,
∴△PQE∽△ODA,
∴ =3,即EQ=3PQ,
∵直線AB的解析式為y=﹣x﹣4,
∴∠ABO=45°=∠PFQ,
∴PQ=FQ,BG=GF,
∴EF=4PQ,
∴GE=GF+4PQ,
∵S△BGF=3S△EFP,
∴GF2=3××4PQ2,
∴GF=2 PQ,
∴.
科目:初中數學 來源: 題型:
【題目】下列語句:①全等三角形的周長相等.②面積相等的三角形是全等三角形.③若成軸對稱的兩個圖形中的對稱線段所在直線相交,則這個交點一定在對稱軸上.④全等三角形的所有邊相等.其中正確的有( 。
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC=90°,AB⊥AC,AB=3,BC=5,EF垂直平分BC,點P為直線EF上的任一點,則AP+BP的最小值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l1的函數表達式為y1=﹣3x+3,且l1與x軸交于點D,直線l2:y2=kx+b經過點A,B,與直線l1交于點C.
(1)求直線l2的函數表達式及C點坐標;
(2)求△ADC的面積;
(3)當x滿足何值時,y1>y2;(直接寫出結果)
(4)在直角坐標系中有點E,和A,C,D構成平行四邊形,請直接寫出E點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC=90°,AB⊥AC,AB=3,BC=5,EF垂直平分BC,點P為直線EF上的任一點,則AP+BP的最小值是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com