【題目】如圖1,在ABC中,ABAC,過AB上一點DDEACBC于點E,以E為頂點,ED為一邊,作∠DEFA,另一邊EFAC于點F

1)求證:四邊形ADEF為平行四邊形;

2)當(dāng)DAB中點時,四邊形ADEF的形狀為 (直接寫出結(jié)論);

3)延長圖1中的DE到點G,使EGDE,連接AEAG,FG,得到圖2.若ADAG,判斷四邊形AEGF的形狀,并說明理由.

【答案】1)見解析;(2)菱形;(3)四邊形AEGF是矩形,理由見解析

【解析】

1)根據(jù)平行線的性質(zhì)得到∠BDE=A,根據(jù)題意得到∠DEF=BDE,根據(jù)平行線的判定定理得到ADEF,根據(jù)平行四邊形的判定定理證明;

2)根據(jù)三角形中位線定理得到DE=AC,得到AD=DE,根據(jù)菱形的判定定理證明;

3)根據(jù)等腰三角形的性質(zhì)得到AEEG,根據(jù)有一個角是直角的平行四邊形是矩形證明.

1)證明:∵DEAC

∴∠BDE=A,

∵∠DEF=A,

∴∠DEF=BDE,

ADEF,又∵DEAC,

∴四邊形ADEF為平行四邊形;

2)解:ADEF的形狀為菱形,

理由如下:∵點DAB中點,

AD=AB,

DEAC,點DAB中點,

DE=AC,

AB=AC,

AD=DE,

∴平行四邊形ADEF為菱形,

故答案為:菱形;

3)四邊形AEGF是矩形,

理由如下:由(1)得,四邊形ADEF為平行四邊形,

AFDE,AF=DE,

EG=DE

AFDE,AF=GE

∴四邊形AEGF是平行四邊形,

AD=AGEG=DE,

AEEG

∴四邊形AEGF是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,ABC是等邊三角形,如圖①,點DE分別在射線BA、BC上,且AD=CE,求證:BDE是等邊三角形;

2)如圖②,點DBA邊上,點E在射線BC上,AD=CE,連接DEAC于點F,請問DFEF的數(shù)量關(guān)系是什么?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,破殘的圓形輪片上,AB的垂直平分線交弧AB于點C,交弦AB于點D.已知AB=24cm,CD=8cm

1)求作此殘片所在的圓(不寫作法保留作圖痕跡)

2)求殘片所在圓的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形的邊長為1,點邊上的一個動點(與不重合),以為頂點在所在直線的上方作

1)當(dāng)經(jīng)過點時,

①請直接填空:________(可能,不可能)過點:(圖1僅供分析)

②如圖2,在上截取,過點作垂直于直線,垂足為點,作,求證:四邊形為正方形;

③如圖2,將②中的已知與結(jié)論互換,即在上取點點在正方形外部),過點作垂直于直線,垂足為點,作,若四邊形為正方形,那么是否相等?請說明理由;

2)當(dāng)點在射線上且不過點時,設(shè)交邊,且.在上存在點,過點作垂直于直線,垂足為點,使得,連接,則當(dāng)為何值時,四邊形的面積最大?最大面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系中有為坐標原點,,將此三角形繞原點順時針旋轉(zhuǎn),得到,二次函數(shù)的圖象剛好經(jīng)過三點.

(1)求二次函數(shù)的解析式及頂點的坐標;

(2)過定點的直線與二次函數(shù)圖象相交于兩點.

①若,求的值;

②證明:無論為何值,恒為直角三角形;

③當(dāng)直線繞著定點旋轉(zhuǎn)時,外接圓圓心在一條拋物線上運動,直接寫出該拋物線的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一列數(shù):1,-2,3,-45,-67…將這列數(shù)排成下列形式:

1行 1

2行。2 3

3行 -4 5。6

4行 7。8 9。10

5行 11 -12 13。14 15

……

按照上述規(guī)律排列下去,則第50行的最后一個數(shù)是___________2019這個數(shù)在第___行,從左往右是第_____個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,對稱軸是直線x=-,有下列結(jié)論:(1)ab>0;(2)a+b+c<0;(3)b+2c<0;(4)a-2b+4c>0.其中正確結(jié)論的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在半徑為10 cm圓中,兩條平行弦分別長為12 cm,16cm,則這兩條平行弦之間的距離為( )

A. 28 cm4 cm B. 14cm2cm C. 13 cm4 cm D. 5 cm13cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC中,BF是AC邊上中線,點D在BF上,連接AD,在AD的右側(cè)作等邊△ADE,連接EF,當(dāng)△AEF周長最小時,∠CFE的大小是( 。

A. 30° B. 45° C. 60° D. 90°

查看答案和解析>>

同步練習(xí)冊答案