【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=的圖象與一次函數(shù)y=2x﹣1的圖象交于A、B兩點(diǎn),已知A(m,﹣3).
(1)求k及點(diǎn)B的坐標(biāo);
(2)若點(diǎn)C是y軸上一點(diǎn),且S△ABC=5,直接寫出點(diǎn)C的坐標(biāo).
【答案】(1)k=3,B(,2).(2)點(diǎn)C的坐標(biāo)為(0,3)或(0,﹣5).
【解析】
(1)根據(jù)題意由直線y=2x-1經(jīng)過點(diǎn)A(m,-3),把y=-3代入解析式即可求出m的值;再根據(jù)反比例函數(shù)經(jīng)過點(diǎn)A即可得出k的值;聯(lián)立兩個(gè)函數(shù)解析式即可求出點(diǎn)B的坐標(biāo);
(2)由題意求出直線AB與y軸的交點(diǎn)坐標(biāo),再根據(jù)A、B兩點(diǎn)的橫坐標(biāo)以及三角形的面積公式解答即可.
解:(1)把y=﹣3代入y=2x﹣1得x=﹣1,
∴A(﹣1,﹣3);
又反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A,
∴k=3,
,解得,,
∴B(,2).
(2)設(shè)直線AB的解析式為y=kx+b,
則,解得.
∴直線AB的解析式為y=2x﹣1,
所以直線AB與y軸交于點(diǎn)(0,﹣1),
設(shè)點(diǎn)C的縱坐標(biāo)為y,
當(dāng)點(diǎn)C在y軸的正半軸時(shí),,解得y=3,
當(dāng)點(diǎn)C在y軸的負(fù)半軸時(shí),,解答y=﹣5.
∴點(diǎn)C的坐標(biāo)為(0,3)或(0,﹣5).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年11月,胡潤(rùn)研究院攜手知識(shí)產(chǎn)權(quán)與科創(chuàng)云平臺(tái)匯桔,聯(lián)合發(fā)布《IP助燃AI新紀(jì)元﹣2019中國(guó)人工智能產(chǎn)業(yè)知識(shí)產(chǎn)權(quán)發(fā)展白皮書》,白皮書公布了2019中國(guó)人工智能企業(yè)知識(shí)產(chǎn)權(quán)競(jìng)爭(zhēng)力百?gòu)?qiáng)榜,對(duì)500余家中國(guó)人工智能主流企業(yè)進(jìn)行定量評(píng)估(滿分100分),前三名分別為:華為、騰訊、百度.對(duì)得分由高到低的前41家企業(yè)的有關(guān)數(shù)據(jù)進(jìn)行收集、整理、描述和分析.下面給出了部分信息:
a.得分的頻數(shù)分布直方圖:
(數(shù)據(jù)分成8組:60≤x<65,65≤x<70,70≤x<75,75≤x<80,80≤x<85,85≤x<90,90≤x<95,95≤x≤100,)
b.知識(shí)產(chǎn)權(quán)競(jìng)爭(zhēng)力得分在70≤x<75這一組的是:70.3,71.6,72.1,72.5,74.1.
c.41家企業(yè)注冊(cè)所在城市分布圖(不完整)如圖:(結(jié)果保留一位小數(shù))
d.漢王科技股份有限公司的知識(shí)產(chǎn)權(quán)競(jìng)爭(zhēng)力得分是70.3.
(以上數(shù)據(jù)來源于《IP助燃AI新紀(jì)元﹣2019中國(guó)人工智能產(chǎn)業(yè)知識(shí)產(chǎn)權(quán)發(fā)展白皮書》)
根據(jù)以上信息,回答下列問題:
(1)漢王科技股份有限公司的知識(shí)產(chǎn)權(quán)競(jìng)爭(zhēng)力得分排名是第 ;
(2)百度在人工智能領(lǐng)域取得諸多成果,尤其在智能家居、自動(dòng)駕駛與服務(wù)于企業(yè)的智能云領(lǐng)域,百度都已進(jìn)行前瞻布局,請(qǐng)你估計(jì)百度在本次排行榜中的得分大概是 ;
(3)在41家企業(yè)注冊(cè)所在城市分布圖中,m= ,請(qǐng)用陰影標(biāo)出代表上海的區(qū)域;
(4)下列推斷合理的是 .(只填序號(hào))
①前41家企業(yè)的知識(shí)產(chǎn)權(quán)競(jìng)爭(zhēng)力得分的中位數(shù)應(yīng)在65≤x<70這一組中,眾數(shù)在65≤x<70這一組的可能性最大;
②前41家企業(yè)分布于我國(guó)8個(gè)城市.人工智能產(chǎn)業(yè)的發(fā)展聚集于經(jīng)濟(jì)、科技、教育相對(duì)發(fā)達(dá)的城市,一線城市中,北京的優(yōu)勢(shì)尤其突出,貢獻(xiàn)榜單過半的企業(yè),充分體現(xiàn)北京在人工智能領(lǐng)域的產(chǎn)業(yè)集群優(yōu)勢(shì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年是我國(guó)建國(guó)70周年,回顧過去展望未來,創(chuàng)新是引領(lǐng)發(fā)展的第一動(dòng)力,北京科技創(chuàng)新能力不斷增強(qiáng),下面的統(tǒng)計(jì)圖反映了2010﹣2018年北京市每萬(wàn)人發(fā)明專利申請(qǐng)數(shù)與授權(quán)數(shù)的情況.
根據(jù)統(tǒng)計(jì)圖提供的信息,下列推斷合理的是( )
A. 2010﹣2018年,北京市毎萬(wàn)人發(fā)明專利授權(quán)數(shù)逐年增長(zhǎng)
B. 2010﹣2018年,北京市毎萬(wàn)人發(fā)明專利授權(quán)數(shù)的平均數(shù)超過10件
C. 2010年申請(qǐng)后得到授權(quán)的比例最低
D. 2018年申請(qǐng)后得到授權(quán)的比例最高
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC,作它的外接圓⊙O,連接AO并延長(zhǎng)交⊙O于點(diǎn)D,交BC于點(diǎn)E,過點(diǎn)D作DF∥BC,交AC的延長(zhǎng)線于點(diǎn)F.
(1)依題意補(bǔ)全圖形并證明:DF與⊙O相切;
(2)若AB=6,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的網(wǎng)格是正方形網(wǎng)格,則∠PAB﹣∠PCD=_____°.(點(diǎn)A,B,C,D,P是網(wǎng)格線交點(diǎn))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx﹣1交y軸于點(diǎn)P.
(1)過點(diǎn)P作與x軸平行的直線,交拋物線于點(diǎn)Q,PQ=4,求的值;
(2)橫縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).在(1)的條件下,記拋物線與x軸所圍成的封閉區(qū)域(不含邊界)為W.若區(qū)域W內(nèi)恰有4個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】居民人均可支配收入、居民人均消費(fèi)總支出和恩格爾系數(shù)都是反映居民生活水平的指標(biāo),其中恩格爾系數(shù)指居民家庭中食品支出占消費(fèi)總支出的比重,恩格爾系數(shù)越小,說明食品支出占消費(fèi)總支出比重越低,居民家庭越富裕,反之越貧窮.
下面是根據(jù)從權(quán)威機(jī)構(gòu)獲得的部分?jǐn)?shù)據(jù)繪制的統(tǒng)計(jì)圖:
根據(jù)以上信息,回答下列問題:
(1)2019年中國(guó)城鄉(xiāng)居民恩格爾系數(shù)m約為 (精確到0.1%);
(2)2019年居民人均消費(fèi)總支出n約為 萬(wàn)元(精確到千位);
(3)下面的推斷合理的是 .
①2015﹣2019年中國(guó)城鄉(xiāng)居民人均可支配收入和人均消費(fèi)總支出均呈逐年上升的趨勢(shì),說明中國(guó)居民生活水平逐步提高;
②2015﹣2019年中國(guó)城鄉(xiāng)居民恩格爾系數(shù)呈現(xiàn)下降趨勢(shì),說明中國(guó)居民家庭富裕程度越來越高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的布袋中裝有標(biāo)著數(shù)字2,3,4,5的4個(gè)小球,這4個(gè)小球的材質(zhì)、大小和形狀完全相同,現(xiàn)從中隨機(jī)摸出兩個(gè)小球,這兩個(gè)小球上的數(shù)字之積大于9的概率為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△PQN中,若∠P=∠Q+α(0°<α≤25°),則稱△PQN為“差角三角形”,且∠P是 ∠Q的“差角”.
(1)已知△ABC是等邊三角形,判斷△ABC是否為“差角三角形”,并說明理由;
(2)在△ABC中,∠C=90°,50°≤∠B≤70°,判斷△ABC是否為“差角三角形”,若是,請(qǐng)寫出所有的“差角”并說明理由;若不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com