【題目】如圖所示的網格是正方形網格,則∠PAB﹣∠PCD=_____°.(點A,B,C,D,P是網格線交點)
【答案】45
【解析】
連接AE,PE,由圖可知,∠EAB=∠PCD,則∠PAB∠PCD=∠PAB∠EAB=∠PAE,然后根據勾股定理可以求得PA、PE、AE的長,再利用勾股定理的逆定理可以判斷△PAE的形狀,從而可以得到∠PAE的度數,然后即可得到∠PAB∠PCD的度數.
解:連接AE,PE,
則∠EAB=∠PCD,
故∠PAB﹣∠PCD=∠PAB﹣∠EAB=∠PAE,
設正方形網格的邊長為a,
則PA=,PE=,AE=,
∵PA2+PE2=5a2+5a2=10a2=AE2,
∴△APE是直角三角形,∠APE=90°,
又∵PA=PE,
∴∠PAE=∠PEA=45°,
∴∠PAB﹣∠PCD=45°,
故答案為:45.
科目:初中數學 來源: 題型:
【題目】小明、小聰參加了100m跑的5期集訓,每期集訓結束時進行測試,根據他們的集訓時間、測試成績繪制成如圖兩個統(tǒng)計圖.
根據圖中信息,有下面四個推斷:
①這5期的集訓共有56天;
②小明5次測試的平均成績是11.68秒;
③從集訓時間看,集訓時間不是越多越好,集訓時間過長,可能造成勞累,導致成績下滑;
④從測試成績看,兩人的最好成績都是在第4期出現(xiàn),建議集訓時間定為14天.
所有合理推斷的序號是( 。
A.①③B.②④C.②③D.①④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】國家推行“節(jié)能減排,低碳經濟”政策后,低排量的汽車比較暢銷,某汽車經銷商購進A、B兩種型號的低排量汽車,其中A型汽車的進貨單價比B型汽車的進貨單價多2萬元;花50萬元購進A型汽車的數量與花40萬元購進B型汽車的數量相同.
(1)求A、B兩種型號汽車的進貨單價;
(2)銷售中發(fā)現(xiàn)A型汽車的每周銷量yA(臺)與售價x(萬元/臺)滿足函數關系yA=﹣x+20,B型汽車的每周銷量yB(臺)與售價x(萬元/臺)滿足函數關系yB=﹣x+14,A型汽車的售價比B型汽車的售價高2萬元/臺.問A、B兩種型號的汽車售價各為多少時,每周銷售這兩種汽車的總利潤最大?最大利潤是多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于平面直角坐標系xOy中的點P,Q,給出如下定義:若P,Q為某個三角形的頂點,且邊PQ上的高h,滿足h=PQ,則稱該三角形為點P,Q的“生成三角形”.
(1)已知點A(4,0);
①若以線段OA為底的某等腰三角形恰好是點O,A的“生成三角形”,求該三角形的腰長;
②若Rt△ABC是點A,B的“生成三角形”,且點B在x軸上,點C在直線y=2x﹣5上,則點B的坐標為 ;
(2)⊙T的圓心為點T(2,0),半徑為2,點M的坐標為(2,6),N為直線y=x+4上一點,若存在Rt△MND,是點M,N的“生成三角形”,且邊ND與⊙T有公共點,直接寫出點N的橫坐標的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,反比例函數y=的圖象與一次函數y=2x﹣1的圖象交于A、B兩點,已知A(m,﹣3).
(1)求k及點B的坐標;
(2)若點C是y軸上一點,且S△ABC=5,直接寫出點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面上存在點P、點M與線段AB.若線段AB上存在一點Q,使得點M在以PQ為直徑的圓上,則稱點M為點P與線段AB的共圓點.
已知點P(0,1),點A(﹣2,﹣1),點B(2,﹣1).
(1)在點O(0,0),C(﹣2,1),D(3,0)中,可以成為點P與線段AB的共圓點的是 ;
(2)點K為x軸上一點,若點K為點P與線段AB的共圓點,請求出點K橫坐標xK的取值范圍;
(3)已知點M(m,﹣1),若直線y=x+3上存在點P與線段AM的共圓點,請直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有這樣一個問題:探究函數的圖象與性質并解決問題.
小明根據學習函數的經驗,對問題進行了探究.
下面是小明的探究過程,請補充完整:
(1)函數的自變量的取值范圍是 ;
(2)取幾組與的對應值,填寫在下表中.
… | 0 | 1 | 1.2 | 1.25 | 2.75 | 2.8 | 3 | 4 | 5 | 6 | 8 | … | ||||
… | 1 | td style="width:6%; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.62pt; vertical-align:middle">2 | 3 | 6 | 7.5 | 8 | 8 | 7.5 | 6 | 3 | 1.5 | 1 | … |
的值為_____________;
(3)如下圖,在平面直角坐標系中,描出補全后的表中各組對應值所對應的點,并畫出該函數的圖象;
(4)獲得性質,解決問題:
①通過觀察、分析、證明,可知函數的圖象是軸對稱圖形,它的對稱軸是____________;
②過點作直線軸,與函數的圖象交于點(點在點的左側),則的值為____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在中,,,以為邊在的另一側作,點為射線上任意一點,在射線上截取,連接.
(1)如圖1,當點落在線段的延長線上時,直接寫出的度數;
(2)如圖2,當點落在線段(不含邊界)上時,與于點,請問(1)中的結論是否仍成立?如果成立,請給出證明;如果不成立,請說明理由;
(3)在(2)的條件下,若,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com