分析 (1)選取①②,利用ASA判定△BEO≌△DFO即可;
(2)根據(jù)△BEO≌△DFO可得EO=FO,BO=DO,再根據(jù)等式的性質可得AO=CO,根據(jù)兩條對角線互相平分的四邊形是平行四邊形可得結論.
解答 證明:(1)選取①②,
∵在△BEO和△DFO中$\left\{\begin{array}{l}{∠1=∠2}\\{BO=DO}\\{∠EOB=∠FOD}\end{array}\right.$,
∴△BEO≌△DFO(ASA);
(2)由(1)得:△BEO≌△DFO,
∴EO=FO,BO=DO,
∵AE=CF,
∴AO=CO,
∴四邊形ABCD是平行四邊形.
點評 此題主要考查了平行四邊形的判定,以及全等三角形的判定,關鍵是掌握兩條對角線互相平分的四邊形是平行四邊形.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | (3,-2) | B. | (-2,3) | C. | (-3,2) | D. | (2,-3) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 22cm | B. | 20 cm | C. | 21cm | D. | 15cm |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com