【題目】閱讀下面材料:
小明觀察一個由1×1正方形點陣組成的點陣圖,圖中水平與豎直方向上任意兩個相鄰點間的距離都是1,他發(fā)現一個有趣的問題:對于圖中出現的任意兩條端點在點陣上且互相不垂直的線段,都可以在點陣中找到一點構造垂直,進而求出它們相交所成銳角的正切值.
請回答:
(1)如圖1,A,B,C是點陣中的三個點,請在點陣中找到點D,作出線段CD,使得CD⊥AB;
(2)如圖2,線段AB與CD交于點O.為了求出∠AOD的正切值,小明在點陣中找到了點E,連接AE,恰好滿足AE⊥CD于點F,再作出點陣中的其它線段,就可以構造相似三角形,經過推理和計算能夠使問題得到解決.
請你幫小明計算:OC= ;tan∠AOD= ;
解決問題:
如圖3,計算:tan∠AOD= .
【答案】(1)見解析;(2);5;解決問題:.
【解析】
(1)用三角板過C作AB的垂線,從而找到D的位置;
(2)連接AC、DB、AD、DE.由△ACO∽△DBO求得CO的長,由等腰直角三角形的性質可以求出AF,DF的長,從而求出OF的長,在Rt△AFO中,根據銳角三角函數的定義即可求出tan∠AOD的值;
(3)如圖,連接AE、BF,則AF=,AB=,由△AOE∽△BOF,可以求出AO=,在Rt△AOF中,可以求出OF=,故可求得tan∠AOD.
解:(1)如圖所示:
線段CD即為所求.
(2)如圖2所示連接AC、DB、AD.
∵AD=DE=2,
∴AE=2.
∵CD⊥AE,
∴DF=AF=.
∵AC∥BD,
∴△ACO∽△DBO.
∴CO:DO=2:3.
∴CO=.
∴DO=.
∴OF=.
tan∠AOD== 5.
解決問題:如圖3所示:
根據圖形可知:BF=2,AE=5.
由勾股定理可知:AF==,AB==.
∵FB∥AE,
∴△AOE∽△BOF.
∴AO:OB=AE:FB=5:2.
∴AO=.
在Rt△AOF中,OF==.
∴tan∠AOD=.
科目:初中數學 來源: 題型:
【題目】小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B,C兩點的俯角分別為53°和45°,已知大橋BC與地面在同一水平面上,其長度為75m,請求出熱氣球離地面的高度.(參考數據:sin53°≈,cos53°≈,tan53°≈).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC,點D是線段AB上的一點,連接CD,過點B作BG⊥CD,分別交CD,CA于點E,F,與過點A且垂直于AB的直線相交于點G,連接DF.給出以下四個結論:①②若點D是AB的中點,則AF=AB;③當B,C,F,D四點在同一個圓上時,DF=DB;④若,則,其中正確的結論序號是( )
A. ①② B. ③④ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=∠ADC=90°,對角線AC,BD交于點O,DE平分∠ADC交BC于點E,連接OE.
(1)求證:四邊形ABCD是矩形;
(2)若AB=2,求△OEC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,,點D在邊上,,,點D到的距離為3,下列說法中:①是的平分線;②是等腰三角形;③點D在的中垂線上;④::3,其中說法正確的是 ______ 把所有正確結論的序號都寫在橫線上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,把圓形井蓋卡在角尺〔角的兩邊互相垂直,一邊有刻度)之間,即圓與兩條直角邊相切,現將角尺向右平移10cm,如圖2,OA邊與圓的兩個交點對應CD的長為40cm則可知井蓋的直徑是( )
A. 25cm B. 30cm C. 50cm D. 60cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與x軸相交于點A,與直線相交于點P.
(1)求點P的坐標.
(2)請判斷△OPA的形狀并說明理由.
(3)動點E從原點O出發(fā),以每秒1個單位的速度沿著O→P→A的路線向點A勻速運動(E不與點O、A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B.設運動t秒時,矩形EBOF與△OPA重疊部分的面積為S.求S與t之間的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,連接BE、AD,P為BD中點,M為AB中點、N為DE中點,連接PM、PN、MN.
(1)試判斷△PMN的形狀,并證明你的結論;
(2)若CD=5,AC=12,求△PMN的周長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com