【題目】已知ABO的直徑,DAO的切線,切點為A,過O上的點CCDABAD于點D,連接BC、AC

1)如圖,若DCO的切線,切點為C,求∠ACD和∠DAC的大。

2)如圖,當CDO的割線且與O交于點E時,連接AE,若∠EAD30°,求∠ACD和∠DAC的大。

【答案】1)∠ACD=∠DAC45°;(2)∠ACD30°,∠DAC60°.

【解析】

1)先根據(jù)題意確定三角形ADC是等腰直角三角形,進而求出∠ACD和∠DAC的大;

2)根據(jù)AB是圓O的直徑,DA為圓O的切線,切點為A,可得DAAB,根據(jù)∠EAD=30°,可得∠BAE=60°,根據(jù)圓內(nèi)接四邊形對角互補可得∠BCE=120°,根據(jù)AB是圓O的直徑,可得∠BCA=90°,進而求得∠ACD和∠DAC的大。

1)∵ABO的直徑,DAO的切線,切點為A,

DAAB

∴∠DAB90°,

DCO的切線,切點為C,

DCDA

CDAB,

∴∠D+DAB180°,

∴∠D90°,

∴∠ACD=∠DAC45°;

2)∵ABO的直徑,DAO的切線,切點為A,

DAAB,

∴∠DAB90°,

DEA=∠EAB,

∴∠ADC90°,

∵∠EAD30°,

∴∠DEA60°,

∴∠EAB60°,

∴∠BCE120°,

ABO的直徑,

∴∠BCA90°,

∴∠ACD30°,

∴∠DAC60°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=﹣x+2分別交x軸、y軸于點AB.點C的坐標是(﹣1,0),拋物線yax2+bx﹣2經(jīng)過AC兩點且交y軸于點D.點Px軸上一點,過點Px軸的垂線交直線AB于點M,交拋物線于點Q,連結(jié)DQ,設點P的橫坐標為mm≠0).

(1)求點A的坐標.

(2)求拋物線的表達式.

(3)當以B、D、QM為頂點的四邊形是平行四邊形時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,某新建火車站站前廣場需要綠化的面積為35000,施工隊在綠化了11000后,將每天的工作量增加為原來的1.5倍,結(jié)果提前4天完成了該項綠化工程.

1)該項綠化工程原計劃每天完成多少平方米?

2)該項綠化工程中有一塊長為20、寬為8的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖②所示),則人行通道的寬度是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓錐的軸截面是邊長為6cm的正三角形ABC,P是母線AC的中點.則在圓錐的側(cè)面上從B點到P點的最短路線的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:拋物線yax+1)(x3)交x軸于A、C兩點,交y軸于B.且OB2CO

1)求點ABC的坐標及二次函數(shù)解析式;

2)在直線AB上方的拋物線上有動點E,作EGx軸交x軸于點G,交AB于點M,作EFAB于點F.若點M的橫坐標為m,求線段EF的最大值.

3)拋物線對稱軸上是否存在點P使得ABP為直角三角形,若存在請直接寫出點P的坐標;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個半徑為的圓形紙片在邊長為的等邊三角形內(nèi)任意運動,則在該等邊三角形內(nèi),這個圓形紙片不能接觸到的部分的面積是____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E為對角線AC上一點,且AECB,連接DE并延長交BC于點G,過點AAHBE于點H,交BC于點F.以下結(jié)論:①BHHE;②∠BEG45°;③△ABF ≌△DCG 4BH2BG·CD.其中正確結(jié)論的個數(shù)是( )

A.1B.2

C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新型冠狀病毒肺炎疫情發(fā)生后,全社會積極參與疫情防控工作,某市為了盡快完成100萬只口罩的生產(chǎn)任務,安排甲、乙兩個大型工廠完成.已知甲廠每天能生產(chǎn)口罩的數(shù)量是乙廠每天能生產(chǎn)口罩的數(shù)量的1.5倍,并且在獨立完成60萬只口罩的生產(chǎn)任務時,甲廠比乙廠少用5天.問至少應安排兩個工廠工作多少天才能完成任務?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角三角形ABC中,直角邊,,設P、Q分別為AB,BC上的動點,點P自點A沿AB方向向點B作勻速移動且速度為每秒2cm,同時點Q自點B沿BC方向向點C作勻速移動且速度為每秒1cm,當P點到達B點時,Q點就停止移動.P,Q移動的時間t.

1)寫出的面積S)與時間ts)之間的函數(shù)表達式,并寫出t的取值范圍.

2)當t為何值時,為等腰三角形?

查看答案和解析>>

同步練習冊答案