【題目】如圖,正方形ABCD中,AB=4,P是CD邊上的動(dòng)點(diǎn)(P點(diǎn)不與C、D重合),過點(diǎn)P作直線與BC的延長(zhǎng)線交于點(diǎn)E,與AD交于點(diǎn)F,且CP=CE,連接DE、BP、BF,設(shè)CP═x,△PBF的面積為S1 , △PDE的面積為S2

(1)求證:BP⊥DE.
(2)求S1﹣S2關(guān)于x的函數(shù)解析式,并寫出x的取值范圍.
(3)分別求當(dāng)∠PBF=30°和∠PBF=45°時(shí),S1﹣S2的值.

【答案】
(1)解:如圖1中,延長(zhǎng)BP交DE于M.

∵四邊形ABCD是正方形,

∴CB=CD,∠BCP=∠DCE=90°,

∵CP=CE,

∴△BCP≌△DCE,

∴∠BCP=∠CDE,

∵∠CBP+∠CPB=90°,∠CPB=∠DPM,

∴∠CDE+∠DPM=90°,

∴∠DMP=90°,

∴BP⊥DE.


(2)解:由題意S1﹣S2= (4+x)x﹣ (4﹣x)x=x2(0<x<4).
(3)解:①如圖2中,當(dāng)∠PBF=30°時(shí),

∵∠CPE=∠CEP=∠DPF=45°,∠FDP=90°,

∴∠PFD=∠DPF=45°,

∴DF=DP,∵AD=CD,

∴AF=PC,∵AB=BC,∠A=∠BCP=90°,

∴△BAF≌△BCP,

∴∠ABF=∠CBP=30°,

∴x=PC=BCtan30°=

∴S1﹣S2=x2=

②如圖3中,當(dāng)∠PBF=45°時(shí),在CB上截取CN=CP,理解PN.

由①可知△ABF≌△BCP,

∴∠ABF=∠CBP,

∵∠PBF=45°,

∴∠CBP=22.5°,

∵∠CNP=∠NBP+∠NPB=45°,

∴∠NBP=∠NPB=22.5°,

∴BN=PN= x,

x+x=4,

∴x=4 ﹣4,

∴S1﹣S2=(4 ﹣4)2=48﹣32


【解析】(1)首先延長(zhǎng)BP交DE于M.然后依據(jù)SAS可證明△BCP≌△DCE,依據(jù)全等三角形的性質(zhì)可得到∠BCP=∠CDE,由∠CBP+∠CPB=90°,∠CPB=∠DPM,即可推出∠CDE+∠DPM=90°;
(2)根據(jù)題意可得到S1-S2=S△PBE-S△PDE,然后依據(jù)三角形的面積公式列出函數(shù)關(guān)系式即可;
(3)分當(dāng)∠PBF=30°和∠PBF=45°兩種情形分別求出PC的長(zhǎng),最后再利用(2)中結(jié)論進(jìn)行計(jì)算即可.
【考點(diǎn)精析】通過靈活運(yùn)用正方形的性質(zhì),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,學(xué)校的實(shí)驗(yàn)樓對(duì)面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C測(cè)得教學(xué)樓頂部D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB=30m.

(1)求BCD的度數(shù).

(2)求教學(xué)樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°0.36,tan18°0.32)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AB=5,AC=6,則菱形ABCD的面積是( )

A.24
B.26
C.30
D.48

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列方程中是二元一次方程的是(
A.3x+y=0
B.2x﹣1=4
C.2x2﹣y=2
D.2x+y=3z

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,水流路線呈拋物線,把手端點(diǎn)A,出水口B和落水點(diǎn)C恰好在同一直線上,點(diǎn)A至出水管BD的距離為12cm,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2所示,現(xiàn)用高10.2cm的圓柱型水杯去接水,若水流所在拋物線經(jīng)過點(diǎn)D和杯子上底面中心E,則點(diǎn)E到洗手盆內(nèi)側(cè)的距離EH為_________cm

(第16題圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,AB=AC,AB的垂直平分線交AC于D,△ABC和△DBC的周長(zhǎng)分別是30cm和19cm,則△ABC的腰和底邊長(zhǎng)分別為( )
A.11cm和8cm
B.8cm和11cm
C.10cm和8cm
D.12cm和6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了鍛煉意志提高班級(jí)凝聚力,某校八年級(jí)學(xué)生決定全班參加“美麗佛山 一路向前﹣﹣﹣50公里徒步”活動(dòng),從起點(diǎn)步行出發(fā)20分鐘后,負(fù)責(zé)宣傳的王老師騎自行車以2倍的速度原路追趕,結(jié)果在距起點(diǎn)10千米處追上,求學(xué)生步行的速度和王老師騎自行車的速度分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)多邊形內(nèi)角和是它的外角和的5倍,求這個(gè)多邊形的邊數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠AOB=30°,點(diǎn)P在∠AOB內(nèi)部,P1P關(guān)于OA對(duì)稱,P2P關(guān)于OB對(duì)稱,則△P1OP2的形狀一定是(  。

A. 直角三角形 B. 等邊三角形 C. 底邊和腰不相等的等腰三角形 D. 鈍角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案