【題目】四邊形ABCD中,∠A=145°,∠D=75°.
(1)如圖1,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖2,若∠ABC的角平分線BE交DC于點E,且BE∥AD,試求出∠C的度數(shù);
(3)①如圖3,若∠ABC和∠BCD的角平分線交于點E,試求出∠BEC的度數(shù).
②在①的條件下,若延長BA、CD交于點F(如圖4),將原來條件“∠A=145°,∠D=75°”改為“∠F=40°”,其他條件不變,∠BEC的度數(shù)會發(fā)生變化嗎?若不變,請說明理由;若變化,求出∠BEC的度數(shù).
【答案】(1)∠C=70°;(2)∠C=70°;(3)①∠BEC=110°;②不變.∠BEC=110°.
【解析】
(1)先根據(jù)四邊形內(nèi)角和等于360°求出∠B+∠C的度數(shù),再除以2即可求解;
(2)先根據(jù)平行線的性質(zhì)得到∠ABE的度數(shù),再根據(jù)角平分線的定義得到∠ABC的度數(shù),再根據(jù)四邊形內(nèi)角和等于360°求出∠BEC的度數(shù);
(3)①先根據(jù)四邊形內(nèi)角和等于360°求出∠ABC+∠BCD的度數(shù),再根據(jù)角平分線的定義得到∠EBC+∠ECB的度數(shù),再根據(jù)三角形內(nèi)角和等于180°求出∠BEC的度數(shù);
②先根據(jù)三角形內(nèi)角和等于180°求出∠FBC+∠BCF的度數(shù),再根據(jù)角平分線的定義得到∠EBC+∠ECB的度數(shù),再根據(jù)三角形內(nèi)角和等于180°求出∠BEC的度數(shù).
(1)∵四邊形ABCD中,∠A=145°,∠D=75°,
∴∠B+∠C=360°-(145°+75°)=140°,
∵∠B=∠C,
∴∠C=70°;
(2)∵BE∥AD,
∴∠ABE=180°-∠A=180°-145°=35°,
∵∠ABC的角平分線BE交DC于點E,
∴∠ABC=70°,
∴∠C=360°-(145°+75°+70°)=70°;
(3)①∵四邊形ABCD中,∠A=145°,∠D=75°,
∴∠B+∠C=360°-(145°+75°)=140°,
∵∠ABC和∠BCD的角平分線交于點E,
∴∠EBC+∠ECB=70°,
∴∠BEC=180°-70°=110°;
②不變.
∵∠F=40°,
∴∠FBC+∠BCF=180°-40°=140°,
∵∠ABC和∠BCD的角平分線交于點E,
∴∠EBC+∠ECB=70°,
∴∠BEC=180°-70°=110°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC, 點M在△ABC內(nèi),點P在線段MC上,∠ABP=2∠ACM.
(1)若∠PBC=10°,∠BAC=80°,求∠MPB的值
(2)若點M在底邊BC的中線上,且BP=AC,試探究∠A與∠ABP之間的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=∠ADC=90°,連接AC、BD,M、N分別是AC、BD的中點,連接MN
(1)求證:MN⊥BD.
(2)若∠DAC=62°,∠BAC=58°,求∠DMB
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點A逆時針旋轉(zhuǎn)60°,點O,B的對應點分別為O′,B′,連接BB′,則圖中陰影部分的面積是( )
A. B. 2- C. 2- D. 4-
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司共有三個部門,根據(jù)每個部門的員工人數(shù)和相應每人所創(chuàng)的年利潤繪制成如下的統(tǒng)計表和扇形圖.
各部門人數(shù)及每人所創(chuàng)年利潤統(tǒng)計表
部門 | 員工人數(shù) | 每人所創(chuàng)的年利潤/萬元 |
A | 5 | 10 |
B | 8 | |
C | 5 |
(1)①在扇形圖中,C部門所對應的圓心角的度數(shù)為___________;
②在統(tǒng)計表中,___________,___________;
(2)求這個公司平均每人所創(chuàng)年利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,,,點P是對角線AC上的動點不與點A,C重合,連接PD,作交射線BC于點E,以線段PD,PE為鄰邊作矩形PEFD.
線段PD的最小值為______;
求證:,并求矩形PEFD面積的最小值;
是否存在這樣的點P,使得是等腰三角形?若存在,請求出PE的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在長方形ABCD中,AB=8cm,BC=12cm,E為AB的中點,動點P在線段BC上以4cm/s的速度由點B向C運動,同時,動點Q在線段CD上由點C向點D運動,設運動時間為t(s).
(1)當t=2時,求△EBP的面積;
(2)若動點Q以與動點P不同的速度運動,經(jīng)過多少秒,△EBP與△CQP全等?此時點Q的速度是多少?
(3)若動點Q以(2)中的速度從點C出發(fā),動點P以原來的速度從點B同時出發(fā),都逆時針沿長方形ABCD的四邊形運動,經(jīng)過多少秒,點P與點Q第一次在長方形ABCD的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某區(qū)域為響應“綠水青山就是金山銀山”的號召,加強了綠化建設.為了解該區(qū)域群眾對綠化建設的滿意程度,某中學數(shù)學興趣小組在該區(qū)域的甲、乙兩個片區(qū)進行了調(diào)查,得到如下不完整統(tǒng)計圖.
請結合圖中信息,解決下列問題:
(1)此次調(diào)查中接受調(diào)查的人數(shù)為 人,其中“非常滿意”的人數(shù)為 人;
(2)興趣小組準備從“不滿意”的4位群眾中隨機選擇2位進行回訪,已知這4位群眾中有2位來自甲片區(qū),另2位來自乙片區(qū),請用畫樹狀圖或列表的方法求出選擇的群眾來自甲片區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校有2000名學生,為了解全校學生的上學方式,該校數(shù)學興趣小組在全校隨機抽取了150名學生進行抽樣調(diào)查.整理樣本數(shù)據(jù),得到下列圖表:
某校150名學生上學方式的分布表
方式 | 劃記 | 人數(shù) |
步行 | 正正正 | 15 |
騎車 | 正正正正正正 正正正正 | 51 |
乘公共交 通工具 | 正正正正正 正正正正 | 45 |
乘私家車 | 正正正正正正 | 30 |
其他 | 正 | 9 |
合計 | 150 |
(1)理解畫線語句的含義,回答問題:如果150名學生全部在同一個年級抽取,那么這樣的抽取是否合理?請說明理由.答:__________________________________.
(2)該校數(shù)學興趣小組結合調(diào)查獲取的信息,向?qū)W校提出了一些建議.如:騎車上學的學生數(shù)約占全校的34%,建議學校合理安排自行車停車場地.請你結合上述統(tǒng)計的全過程,再提出一條合理化建議:________________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com