【題目】如圖,在△ABC中,∠ABC45°,AD,BE分別為BC,AC邊上的高,連接DE,過點DDFDEBE于點FGBE中點,連接AFDG

1)如圖1,若點F與點G重合,求證:AFDF;

2)如圖2,請寫出AFDG之間的關(guān)系并證明.

【答案】1)詳見解析;(2AF2DG,且AFDG,理由詳見解析.

【解析】

1)設BEAD于點H,證出△ABD是等腰直角三角形,得出AD=BD,證明△DAE≌△DBFASA),得出BF=AE,DF=DE,證出△FDE是等腰直角三角形,得出∠DFE=45°,再證明△AEF是等腰直角三角形,得出∠AFE=45°,即可得出結(jié)論;

2)延長DGM,使GM=DG,交AFH,連接BM,證明△BGM≌△EGDSAS),得出∠MBE=FED=45°=EFD,BM=DE=DF,由(1)知:∠DAC=DBE,再證明△BDM≌△DAFSAS),得出DM=AF=2DG,∠FAD=BDM,證出∠AHD=90°,即可得出結(jié)論.

1)設BEAD于點H,如圖1所示:

ADBE分別為BC,AC邊上的高,

∴∠BEA=ADB=90°.

∵∠ABC=45°,

∴△ABD是等腰直角三角形,

AD=BD

∵∠AHE=BHD,

∴∠DAC=DBH

∵∠ADB=FDE=90°,

∴∠ADE=BDF

在△DAE和△DBF中,∵,

∴△DAE≌△DBFASA),

BF=AE,DF=DE,

∴△FDE是等腰直角三角形,

∴∠DFE=45°.

GBE中點,

BF=EF,

AE=EF

∴△AEF是等腰直角三角形,

∴∠AFE=45°,

∴∠AFD=90°,

AFDF;

2AF=2DG,且AFDG.理由如下:

延長DGM,使GM=DG,交AFH,連接BM,如圖2所示:

在△BGM和△EGD中,∵,

∴△BGM≌△EGDSAS),

∴∠MBE=FED=45°=EFD,BM=DE=DF

由(1)知:∠DAC=DBE,

∴∠MBD=MBE+DBE=45°+DBE,∠EFD=45°=DBE+BDF,

∴∠BDF=45°﹣∠DBE

∵∠ADE=BDF,

∴∠ADF=90°﹣∠BDF=45°+DBE=MBD

在△BDM和△DAF中,∵,

∴△BDM≌△DAFSAS),

DM=AF=2DG,∠FAD=BDM

∵∠BDM+MDA=90°,

∴∠MDA+FAD=90°,

∴∠AHD=90°,

AFDG,

AF=2DG,且AFDG

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】李大媽加盟了紅紅全國燒烤連鎖店,該公司的宗旨是薄利多銷,經(jīng)市場調(diào)查發(fā)現(xiàn),當羊肉串的單價定為元時,每天能賣出串,在此基礎(chǔ)上,每加價元李大媽每天就會少賣出串,考慮了所有因素后李大媽的每串羊肉串的成本價為元,若李大媽每天銷售這種羊肉串想獲得利潤是元,那么請問這種羊肉串應怎樣定價?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知是半圓的直徑,點是半圓上一點,連結(jié),并延長到點,使PC =,連結(jié)

求證:

,

①求弦的長.②求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標中,點A(1,2),將AO繞點A逆時針旋轉(zhuǎn)90°,點O的對應點B恰好落在雙曲線y=(x>0)上,則k的值為( )

A. 2 B. 3 C. 4 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點M、N是∠ABC與∠ACB三等分線的交點,連接MN

1)求證:MN平分∠BMC

2)若∠A60°,求∠BMN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,則下列結(jié)論:①ac>0;a-b+c<0;時,,其中錯誤的結(jié)論有  

A. ②③ B. ②④ C. ①③ D. ①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=x2﹣2x﹣15,y=4x﹣23,交于A、B點(AB的左側(cè)),動點PA點出發(fā),先到達拋物線的對稱軸上的某點E再到達x軸上的某點F,最后運動到點B.若使點P動的總路徑最短,則點P運動的總路徑的長為( 。

A. 10 B. 7 C. 5 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】胖娃、猴子兩人在1800米長的直線道路上跑步,胖娃、猴子兩人同起點、同方向出發(fā),并分別以不同的速度勻速前進.已知,胖娃出發(fā)30秒后,猴子出發(fā),猴子到終點后立即返回,并以原來的速度前進,最后與胖娃相遇,此時跑步結(jié)束. 如圖,(米)表示胖娃、猴子兩人之間的距離,x(秒)表示胖娃出發(fā)的時間,圖中折線及數(shù)據(jù)表示整個跑步過程中yx函數(shù)關(guān)系.那么,猴子到終點后_______秒與胖娃相遇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD的邊長為3,點E,F(xiàn)分別在射線DC,DA上運動,且DE=DF.連接BF,作EH⊥BF所在直線于點H,連接CH.

(1)如圖1,若點E是DC的中點,CH與AB之間的數(shù)量關(guān)系是 ;

(2)如圖2,當點E在DC邊上且不是DC的中點時,(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;

(3)如圖3,當點E,F(xiàn)分別在射線DC,DA上運動時,連接DH,過點D作直線DH的垂線,交直線BF于點K,連接CK,請直接寫出線段CK長的最大值.

查看答案和解析>>

同步練習冊答案