分析 (1)令x=0和y=0分別代入y=-2x+4中即可求出A與B的坐標(biāo).
(2)過點(diǎn)C作CD⊥x軸于點(diǎn)D,利用△ABO≌△CAD,求出點(diǎn)C的坐標(biāo),最后利用待定系數(shù)法求出AC的解析式.
(3)過點(diǎn)P作PE⊥x軸于點(diǎn)E,利用勾股定理即可求出AB=AC=2$\sqrt{5}$,利用S△APB=SOAB+S△OPB-S△OPA列出方程求出m的值.
解答 解:(1)令x=0代入y=-2x+4中
∴y=4,
∴B(0,4)
令y=0代入y=-2x+4中
∴x=2,
∴A(2,0)
(2)過點(diǎn)C作CD⊥x軸于點(diǎn)D,
∵∠BAC=90°,
∴∠DAC+∠BAO=∠ABO+∠BAO=90°,
∴∠ABO=∠ADC,
在△ABO與△CAD中,
$\left\{\begin{array}{l}{∠ABO=∠DAC}\\{∠BOA=∠CDA}\\{AB=AC}\end{array}\right.$
∴△ABO≌△CAD(AAS)
∴CD=OA=2,AD=OB=4,
∴OD=6,
∴C(6,2)
設(shè)直線AC的解析式為y=kx+b
∴$\left\{\begin{array}{l}{2k+b=0}\\{6k+b=2}\end{array}\right.$
∴解得:$\left\{\begin{array}{l}{k=\frac{1}{2}}\\{b=-1}\end{array}\right.$
∴直線AC的解析式為:y=$\frac{1}{2}$x-1
(3)過點(diǎn)P作PE⊥x軸于點(diǎn)E,
∴PE=3,OE=-m
∵AB=AC=2$\sqrt{5}$
∴S△ABC=$\frac{1}{2}$AC•AB=$\frac{1}{2}$×2$\sqrt{5}$×2$\sqrt{5}$=10
∴S△APB=SOAB+S△OPB-S△OPA
=$\frac{1}{2}$AO•BO+$\frac{1}{2}$OB•OE-$\frac{1}{2}$OA•PE
=1-2m
∴1-2m=10
∴m=-$\frac{9}{2}$.
點(diǎn)評(píng) 本題考查一次函數(shù)的綜合問題,解題的關(guān)鍵是求出A、B、C的坐標(biāo),然后利用待定系數(shù)法求函數(shù)的解析式,本題屬于中等題型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (5,2) | B. | (3,-4) | C. | (-4,-6) | D. | (-6,3) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | $\sqrt{2}$-1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com